python并发编程之协程

引子

​ 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态

​ cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长。

img

ps:在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态 。

​ 其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换  
#单纯地切换反而会降低运行效率
#串行执行
import time
def consumer(res):
    '''任务1:接收数据,处理数据'''
    pass

def producer():
    '''任务2:生产数据'''
    res=[]
    for i in range(10000000):
        res.append(i)
    return res

start=time.time()
#串行执行
res=producer()
consumer(res)
stop=time.time()
print(stop-start) #1.5536692142486572

#基于yield并发执行
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield

def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)

start=time.time()
#基于yield保存状态,实现两个任务直接来回切换,即并发的效果
#PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
producer()

stop=time.time()
print(stop-start) #2.0272178649902344

而在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

#yield并不能实现遇到io切换
import time
def consumer():
    '''任务1:接收数据,处理数据'''
    while True:
        x=yield
def producer():
    '''任务2:生产数据'''
    g=consumer()
    next(g)
    for i in range(10000000):
        g.send(i)
        time.sleep(2)
start=time.time()
producer() #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行
stop=time.time()
print(stop-start)

对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少。

协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。

​ 因此我们需要找寻一种可以同时满足以下条件的解决方案:

​ 1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。

​ 2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

一 协程介绍

协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。

一句话说明什么是协程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

需要强调的是:

#1. python的线程属于内核级别的,即由操作系统控制调度(如单线程一旦遇到io就被迫交出cpu执行权限,切换其他线程运行)
#2. 单线程内开启协程,一旦遇到io,从应用程序级别(而非操作系统)控制切换

对比操作系统控制线程的切换,用户在单线程内控制协程的切换,优点如下:

#1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
#2. 单线程内就可以实现并发的效果,最大限度地利用cpu

要实现协程,关键在于用户程序自己控制程序切换,切换之前必须由用户程序自己保存协程上一次调用时的状态,如此,每次重新调用时,能够从上次的位置继续执行。

(详细的:协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈)

二 再看yield

我们之前已经学习过一种在单线程下可以保存程序运行状态的方法,即yield,我们来简单复习一下:

#1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
#2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换 
#不用yield:每次函数调用,都需要重复开辟内存空间,即重复创建名称空间,因而开销很大
import time
def consumer(item):
    # print('拿到包子%s' %item)
    x=11111111111
    x1=12111111111
    x3=13111111111
    x4=14111111111
    y=22222222222
    z=33333333333

    pass
def producer(target,seq):
    for item in seq:
        target(item) #每次调用函数,会临时产生名称空间,调用结束则释放,循环100000000次,则重复这么多次的创建和释放,开销非常大

start_time=time.time()
producer(consumer,range(100000000))
stop_time=time.time()
print('run time is:%s' %(stop_time-start_time)) #30.132838010787964


#使用yield:无需重复开辟内存空间,即重复创建名称空间,因而开销小
import time
def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper

@init
def consumer():
    x=11111111111
    x1=12111111111
    x3=13111111111
    x4=14111111111
    y=22222222222
    z=33333333333
    while True:
        item=yield
        # print('拿到包子%s' %item)
        pass
def producer(target,seq):
    for item in seq:
        target.send(item) #无需重新创建名称空间,从上一次暂停的位置继续,相比上例,开销小

start_time=time.time()
producer(consumer(),range(100000000))
stop_time=time.time()
print('run time is:%s' %(stop_time-start_time)) #21.882073879241943

缺点:

协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程。

协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程。

协程的定义(满足1,2,3就可称为协程):

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制))

yield切换在没有io的情况下或者没有重复开辟内存空间的操作,对效率没有什么提升,甚至更慢。

三 greenlet

#安装
pip3 install greenlet
from greenlet import greenlet

def eat(name):
    print('%s eat 1' %name)
    g2.switch('egon')
    print('%s eat 2' %name)
    g2.switch()
def play(name):
    print('%s play 1' %name)
    g1.switch()
    print('%s play 2' %name)

g1=greenlet(eat)
g2=greenlet(play)
g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要
'''
egon eat 1
egon play 1
egon eat 2
egon play 2
'''

单纯的切换(在没有io的情况下或者没有重复开辟内存空间的操作),反而会降低程序的执行速度

#顺序执行
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        
def f2():
    res=1
    for i in range(100000000):
        res*=i
        
start=time.time()
f1()
f2()
stop=time.time()
print('run time is %s' %(stop-start)) #19.985628366470337

#切换
from greenlet import greenlet
import time
def f1():
    res=1
    for i in range(100000000):
        res+=i
        g2.switch()

def f2():
    res=1
    for i in range(100000000):
        res*=i
        g1.switch()

start=time.time()
g1=greenlet(f1)
g2=greenlet(f2)
g1.switch()
stop=time.time()
print('run time is %s' %(stop-start)) # 91.13821244239807

greenlet只是提供了一种比generator更加便捷的切换方式,仍然是没有解决遇到IO自动切换的问题

四 gevent

#安装
pip3 install gevent

Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

#用法
g1=gevent.spawn(func,1,,2,3,x=4,y=5)
#创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的

g2=gevent.spawn(func2)

g1.join() #等待g1结束

g2.join() #等待g2结束

#或者上述两步合作一步:gevent.joinall([g1,g2])

g1.value#拿到func1的返回值

遇到IO阻塞时会自动切换任务

import gevent
import time

def eat(name):
    print('%s eat 1'%name)
    gevent.sleep(2)
    print('%s eat 2'%name)

def play(name):
    print('%s play 1'%name)
    gevent.sleep(3)
    print('%s play 2'%name)

g1 = gevent.spawn(eat,'egon') #创建一个协程对象
g2 = gevent.spawn(play,'mxt')
gevent.joinall((g1,g2))#等待g1,g2结束

print('主线程')
'''
egon eat 1
mxt play 1
egon eat 2
mxt play 2
主线程
'''

上例gevent.sleep(2)模拟的是gevent可以识别的io阻塞,

而time.sleep(2)或其他的阻塞,gevent是不能直接识别的需要用下面一行代码,打补丁,就可以识别了

from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

from gevent import monkey;monkey.patch_all()

import gevent
import time
def eat():
    print('eat food 1')
    time.sleep(2)
    print('eat food 2')

def play():
    print('play 1')
    time.sleep(1)
    print('play 2')

g1=gevent.spawn(eat)
g2=gevent.spawn(play_phone)
gevent.joinall([g1,g2])
print('主')

1.gevent之同步与异步

from gevent import spawn,joinall,monkey;monkey.patch_all()

import time
def task(pid):
    """
    Some non-deterministic task
    """
    time.sleep(0.5)
    print('Task %s done' % pid)


def synchronous():#同步执行
    [task(i) for i in range(10)]

def asynchronous():#异步执行
    g_l=[spawn(task,i) for i in range(10)]
    joinall(g_l)

if __name__ == '__main__':
    t1 = time.time()
    print('Synchronous:')
    synchronous()
    t2 = time.time()
    print(t2-t1) # 5.007286548614502

    print('Asynchronous:')
    asynchronous()
    t3 = time.time()
    print(t3-t2) # 0.5010287761688232

#上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
# 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
# 后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在所有greenlet执行完后才会继续向下走。

2.gevent协程应用:爬虫

from gevent import monkey;monkey.patch_all()
import gevent
import requests
import time

def get_page(url):
    print('GET: %s' %url)
    response=requests.get(url)
    if response.status_code == 200:
        print('%d bytes received from %s' %(len(response.text),url))


start_time=time.time()
gevent.joinall([
    gevent.spawn(get_page,'https://www.python.org/'),
    gevent.spawn(get_page,'https://www.yahoo.com/'),
    gevent.spawn(get_page,'https://github.com/'),
])
stop_time=time.time()
print('run time is %s' %(stop_time-start_time))

3.gevent之应用举例一

通过gevent实现单线程下的socket并发(from gevent import monkey;monkey.patch_all()一定要放到导入socket模块之前,否则gevent无法识别socket的阻塞)。

#服务端
from gevent import monkey;monkey.patch_all()
from socket import *
import gevent

#如果不想用money.patch_all()打补丁,可以用gevent自带的socket
# from gevent import socket
# s=socket.socket()

def server(server_ip,port):
    s=socket(AF_INET,SOCK_STREAM)
    s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    s.bind((server_ip,port))
    s.listen(5)
    while True:
        conn,addr=s.accept()
        gevent.spawn(talk,conn,addr)
def talk(conn,addr):
    try:
        while True:
            res=conn.recv(1024)
            print('client %s:%s msg: %s' %(addr[0],addr[1],res))
            conn.send(res.upper())
    except Exception as e:
        print(e)
    finally:
        conn.close()
if __name__ == '__main__':
    server('127.0.0.1',8080)
#客户端
from socket import *
client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))
while True:
    msg=input('>>: ').strip()
    if not msg:continue
    client.send(msg.encode('utf-8'))
    msg=client.recv(1024)
    print(msg.decode('utf-8'))
#多线程并发多个客户端
from threading import Thread
from socket import *
import threading

def client(server_ip,port):
    c=socket(AF_INET,SOCK_STREAM) 
    #套接字对象一定要加到函数内,即局部名称空间内,放在函数外则被所有线程共享,则大家公用一个套接字对象,那么客户端端口永远一样了
    c.connect((server_ip,port))
    count=0
    while True:
        c.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
        msg=c.recv(1024)
        print(msg.decode('utf-8'))
        count+=1
if __name__ == '__main__':
    for i in range(500):
        t=Thread(target=client,args=('127.0.0.1',8080))
        t.start()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容