【国赛培训】模拟退火

时间:2019.8.19
老师:self
内容:模拟退火
个性:。。之前在刘记川老师的MATLAB PPT里有放上模拟退火的代码,之前也有所了解,只是一直没有在代码上进行突破,借此机会,一举搞懂模拟退火!

模拟退火算法及MATLAB实现

1.模拟退火起源

源于物理退火过程:
(1)加温过程
(2)等温过程
(3)冷却过程

2.参数说明

  1. 控制参数的初值T_\theta;冷却开始的温度
  2. 控制参数T的衰减函数:因计算机能够处理的都是离散数据,因此需要把连续的降温过程离散化成降温过程中的一系列温度点,衰减函数即计算这一系列温度的表达式
  3. 控制参数T的终值T_f(停止准则)
  4. Markov链的长度L;任一温度T的迭代次数

3.metropolis准则

一新解与当前解的目标函数差定义接受概率,即
p=\left\{ \begin{aligned} exp(-\Delta{C'}/T),\Delta{C'}>0 \\ 1, \Delta{C'}<0 \\ \end{aligned} \right.

4.MATLAB代码

clc       %清空环境中的变量
tic
iter = 1;                                                                                   % 迭代次数初值
a=0.99;                                                                                    %温度衰减系数
t0=120;                                                                                    %初始温度
tf=1;                                                                                          %最后温度
t=t0;
rand('seed',0)
Markov=10000;                                                                     %Markov链长度
data1=[565.0 575.0; 25.0 185.0;345.0 750.0;945.0 685.0;845.0 655.0;880.0 660.0;25.0 230.0; 525.0 1000.0;580.0 1175.0;
    650.0 1130.0;1605.0 620.0 ;1220.0 580.0;1465.0 200.0;1530.0 5.0;845.0 680.0;725.0 370.0; 145.0 665.0; 415.0 635.0; 
    510.0 875.0  ;560.0 365.0;300.0 465.0; 520.0 585.0;480.0 415.0;835.0 625.0; 975.0 580.0; 1215.0 245.0;1320.0 315.0;
    1250.0 400.0; 660.0 180.0; 410.0 250.0; 420.0 555.0;575.0 665.0; 1150.0 1160.0; 700.0 580.0; 685.0 595.0; 685.0 610.0;
    770.0 610.0;795.0 645.0; 720.0 635.0; 760.0 650.0;475.0 960.0;95.0 260.0; 875.0 920.0; 700.0 500.0;555.0 815.0;830.0 485.0;
    1170.0 65.0; 830.0 610.0; 605.0 625.0; 595.0 360.0; 1340.0 725.0;1740.0 245.0];



% data1=[37,49,52,20,40,21,17,31,52,51,42,31,5,12,36,52,27,17,13,57,62,42,16,8,7,27,30,43,58,58,37,38,46,61,62,63,32,45,59,5,10,21,5,30,39,32,25,25,48,56,30;
%     52,49,64,26,30,47,63,62,33,21,41,32,25,42,16,41,23,33,13,58,42,57,57,52,38,68,48,67,48,27,69,46,10,33,63,69,22,35,15,6,17,10,64,15,10,39,32,55,28,37,40]';                                                                        %读入城市的坐标
city=data1;
n = size(city,1);                                                                      %城市距离初始化
D = zeros(n,n);                                                   
for i = 1:n
    for j = 1:n
            D(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));
    end    
end                                                                                
route=1:n;   
route_new=route;
best_length=Inf;
Length=Inf;
best_route=route;%%
while t>=tf
           for j=1:Markov
                    %进行扰动,长生新的序列route_new;
                    if (rand<0.7)
                        %交换两个数的顺序
                           ind1=0;ind2=0;
                           while(ind1==ind2&&ind1>=ind2)
                                    ind1=ceil(rand*n);
                                    ind2=ceil(rand*n);
                           end                      
                                      temp=route_new(ind1);
                                      route_new(ind1)=route_new(ind2);
                                      route_new(ind2)=temp;
                    else
                          ind=zeros(3,1);
                          L_ind=length(unique(ind));
                          while (L_ind<3)
                                    ind=ceil([rand*n rand*n rand*n]);
                                    L_ind=length(unique(ind));
                          end
                          ind0=sort(ind);
                          a1=ind0(1);b1=ind0(2);c1=ind0(3);
                         route0=route_new;
                         route0(a1:a1+c1-b1-1)=route_new(b1+1:c1);
                         route0(a1+c1-b1:c1)=route_new(a1:b1);
                         route_new=route0;    
                    end
                     %计算路径的距离,Length_new 
                          length_new = 0;
                        Route=[route_new route_new(1)];
                              for j = 1:n
                                  length_new = length_new+ D(Route(j),Route(j + 1));
                              end
                     if length_new<Length      
                              Length=length_new;
                              route=route_new;
                           %对最优路线和距离更新
                           if       length_new<best_length
                                    iter = iter + 1;    
                                     best_length=length_new;
                                     best_route=route_new;
                           end
                     else
                             if rand<exp(-(length_new-Length)/t)
                                  route=route_new;
                                  Length=length_new;
                              end
                     end
                       route_new=route; 
            end              
                        t=t*a
end
%% 结果显示 
toc
Route=[best_route best_route(1)];
plot([city(Route ,1)], [city(Route ,2)],'o-');
    disp('最优解为:')
    disp(best_route)
    disp('最短距离:')
    disp(best_length)
    disp('最优解迭代次数:')
    disp(iter)
for i = 1:n
    %对每个城市进行标号
    text(city(i,1),city(i,2),['   ' num2str(i)]);
end
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['模拟退火算法(最短距离):' num2str(best_length) ''])
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容