指标

RSI 相对强弱指标
image.png

对振荡性技术指标的科学理解应当是:
上升趋势时,当 RSI 进入超买,预示行情进入主升趋势,市场往往会延续上升趋势;
下降行情时,当 RSI 进入超卖,预示行情进入主跌趋势,市场往往会延续下降趋势。
模盘震荡时,超买时,转空,超卖时,转多。

然而,我们也会经常发现, 在 RSI 进入超买时,市场很快转变为下跌趋势;
在 RSI 进入超卖状态时,市场很快转变为上升趋势。
因此,在使用技术分析指标时,应该根据趋势交易法的原则为买卖依据,
而技术指标只能作为我们的辅助工具。
振荡性技术指标应用在行情的中性、中性偏强和中性偏弱区域准确率较高,
而在趋势过程中通常会失去效果,如图【振荡性技术指标 10-32 】所示。

image.png
MACD指标

MACD称为异同移动平均线,是从双指数移动平均线发展而来的,由快的指数移动平均线(EMA12)减去慢的指数移动平均线(EMA26)得到快线DIF,再用2×(快线DIF-DIF的9日加权移动均线DEA)得到MACD柱。MACD的意义和双移动平均线基本相同,即由快、慢均线的离散、聚合表征当前的多空状态和股价可能的发展变化趋势,但阅读起来更方便。MACD的变化代表着市场趋势的变化,不同K线级别的MACD代表当前级别周期中的买卖趋势。

BOLL

布林线(Boll)指标是股市技术分析的常用工具之一,通过计算股价的“标准差”,再求股价的“信赖区间”。
该指标在图形上画出三条线,其中上下两条线可以分别看成是股价的压力线和支撑线,而在两条线之间还有一条股价平均线,布林线指标的参数最好设为20。一般来说,股价会运行在压力线和支撑线所形成的通道中。

KDJ指标

KDJ指标又叫[随机指标],是一种相当新颖、实用的技术分析指标,它起先用于期货市场的分析,后被广泛用于股市的中短期趋势分析,是期货和股票市场上最常用的技术分析工具。
随机指标KDJ一般是用于[股票]分析的统计体系,根据统计学原理,通过一个特定的周期(常为9日、9周等)内出现过的最高价、最低价及最后一个计算周期的收盘价及这三者之间的比例关系,来计算最后一个计算周期的未成熟随机值RSV,然后根据平滑移动平均线的方法来计算K值、D值与J值,并绘成曲线图来研判股票走势。

OBV 能量潮

OBV 的英文全称是:On Balance Volume,是由美国的投资分析家Joe Granville所创。该指标通过统计[成交量]变动的趋势来推测股价趋势。OBV以“N”字型为波动单位,并且由许许多多“N”型波构成了OBV的曲线图,对一浪高于一浪的“N”型波,称其为“上升潮”(UP TIDE),至于上升潮中的下跌回落则称为“跌潮”(DOWN FIELD)。

能量潮是将成交量数量化,制成趋势线,配合股价趋势线,从价格的变动及成交量的增减关系,推测市场气氛。其主要理论基础是市场价格的变化必须有成交量的配合,股价的波动与成交量的扩大或萎缩有密切的关连。通常股价上升所需的成交量总是较大;下跌时,则成交量可能放大,也可能较小。价格升降而成交量不相应升降,则市场价格的变动难以为继。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容