用python预处理面板数据(续)

大道至简,大音希声,大象无形。

依然是面板数据预处理问题。
这次总结经验,简化方法,用list规避了恼人的合并索引不匹配。
面对棘手的问题,最好的方法可能正是最简单暴力的方法,所谓快刀斩乱麻是也。
只要能解决问题,又何苦老是整些有的没的给自己挖坑?(身处坑底的我一脸认真的说)

原始数据格式:”和我一样的还有4个“

处理后效果

处理后效果(续)

舒服了

代码请参考:

# -*- coding: utf-8 -*-  
# 感谢pandas救我🐕命
import pandas as pd

# 拼接
def rs(filepath):
    df = pd.read_excel(filepath,sheet_name=0)
    df.columns = ['region', '2016','2015','2014', '2013','2012','2011', '2010','2009','2008']
    df = df.drop(labels = ['region'], axis=1)
    l = pd.Series()
    for i in range(1, 10):
        l = pd.concat([l, df.iloc[:,9-i]])
    l = list(l)
    return(l)


data1 = rs("客运量.xls")
data2 = rs("货运周转量.xls")
data3 = rs("固定资产投资.xls")
data4 = rs("邮电业务量.xls")
data5 = rs("技术市场成交额.xls")

# 年份
years = [2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016]
years = years*31
years = sorted(years)

# 地区编号,省份
rg=[
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
]
prv = [
'北京',
'天津',
'河北',
'山西',
'内蒙古',
'辽宁',
'吉林',
'黑龙江',
'上海',
'江苏',
'浙江',
'安徽',
'福建',
'江西',
'山东',
'河南',
'湖北',
'湖南',
'广东',
'广西',
'海南',
'重庆',
'四川',
'贵州',
'云南',
'西藏',
'陕西',
'甘肃',
'青海',
'宁夏',
'新疆'
]

rg = rg*9
prv = prv*9

# 输出
data = pd.DataFrame({
    'region': rg,
    'prv'   : prv,
    'years' : years,
    'pop'   : data1,
    'cmd'   : data2,
    'fin'   : data3,
    'inf'   : data4,
    'tec'   : data5,
})
# 用encoding="utf-8-sig"防止出现乱码
data.to_csv('effect.csv', index=False,encoding="utf-8-sig")

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352