密码之AES

转:https://www.cnblogs.com/luop/p/4334160.html

我们知道数据加密标准(Data Encryption Standard: DES)的密钥长度是56比特,因此算法的理论安全强度是256。但二十世纪中后期正是计算机飞速发展的阶段,元器件制造工艺的进步使得计算机的处理能力越来越强,DES将不能提供足够的安全性。1997年1月2号,美国国家标准技术研究所(National Institute of Standards and Technology: NIST)宣布希望征集高级加密标准(Advanced Encryption Standard: AES)[3],用以取代DES。AES得到了全世界很多密码工作者的响应,先后有很多人提交了自己设计的算法。最终有5个候选算法进入最后一轮:Rijndael,Serpent,Twofish,RC6和MARS,下图分别为其中的5位作者。最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael算法获胜。

Rijndael由比利时两位非常著名的密码学家Joan Daemen和Vincent Rijmen设计。Rijndael是一个分组密码算法族,其分组长度包括128比特、160比特、192比特、224比特、256比特,密钥长度也包括这五种长度,但是最终AES只选取了分组长度为128比特,密钥长度为128比特、192比特和256比特的三个版本。本文主要结合AES-128进行介绍,AES-196和AES-256的思路基本一样,只是密钥扩展算法的过程会稍有不同,加解密的轮数会适当增加,但加解密的操作都是一样的。另外,本文只对AES算法的各个模块、基本原理进行介绍,旨在加深对算法流程、密码算法实现的了解。在正式软件运用中并不推荐自己编写代码,很多开源项目如Linux,OPENSSL,SRTP等都有非常高效的实现。由于数学知识的缺陷,本文不介绍算法安全性分析相关的知识,有兴趣的读者可以自行阅读相关文献。

AES是一个分组密码,属于对称密码范畴,AES算法的模块在对称密码领域特别是分组密码领域常有使用。

AES加密算法涉及4种操作:字节替代(SubBytes)、行移位(ShiftRows)、列混淆(MixColumns)和轮密钥加(AddRoundKey)。下图给出了AES加解密的流程,从图中可以看出:1)解密算法的每一步分别对应加密算法的逆操作,2)加解密所有操作的顺序正好是相反的。正是由于这几点(再加上加密算法与解密算法每步的操作互逆)保证了算法的正确性。加解密中每轮的密钥分别由种子密钥经过密钥扩展算法得到。算法中16字节的明文、密文和轮子密钥都以一个4x4的矩阵表示。

字节代替的主要功能是通过S盒完成一个字节到另外一个字节的映射。S盒的详细构造方法可以参考文献[4]。这里直接给出构造好的结果,下图(a)为S盒,图(b)为S-1(S盒的逆)。S盒用于提供密码算法的混淆性。

S和S-1分别为16x16的矩阵,完成一个8比特输入到8比特输出的映射,输入的高4-bit对应的值作为行标,低4-bit对应的值作为列标。假设输入字节的值为a=a7a6a5a4a3a2a1a0,则输出值为S[a7a6a5a4][a3a2a1a0],S-1的变换也同理。

例如:字节00000000B替换后的值为(S[0][0]=)63H,再通过S-1即可得到替换前的值,(S-1 [6][3]=)00H。

行移位是一个4x4的矩阵内部字节之间的置换,用于提供算法的扩散性。

1) 正向行移位

正向行移位用于加密,其原理图如下。其中:第一行保持不变,第二行循环左移8比特,第三行循环左移16比特,第四行循环左移24比特。

假设矩阵的名字为state,用公式表示如下:state’[i][j] = state[i][(j+i)%4];其中i、j属于[0,3]。

2) 逆向行移位

逆向行移位即是相反的操作,即:第一行保持不变,第二行循环右移8比特,第三行循环右移16比特,第四行循环右移24比特。

用公式表示如下:state’[i][j] = state[i][(4+j-i)%4];其中i、j属于[0,3]。

列混淆:利用GF(28)域上算术特性的一个代替,同样用于提供算法的扩散性。

1) 正向列混淆

正向列混淆的原理图如下:

根据矩阵的乘法可知,在列混淆的过程中,每个字节对应的值只与该列的4个值有关系。此处的乘法和加法都是定义在GF(28)上的,需要注意如下几点:

1) 将某个字节所对应的值乘以2,其结果就是将该值的二进制位左移一位,如果原始值的最高位为1,则还需要将移位后的结果异或00011011;[1]

英文原文描述如下:In particular, multiplication of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value (prior to the shift) is 1.

2) 乘法对加法满足分配率,例如:07·S0,0=(01⊕02⊕04)·S0,0= S0,0⊕(02·S0,0)(04·S0,0)

3) 此处的矩阵乘法与一般意义上矩阵的乘法有所不同,各个值在相加时使用的是模28加法(异或运算)。

下面举一个例子,假设某一列的值如下图,运算过程如下:

在计算02与C9的乘积时,由于C9对应最左边的比特为1,因此需要将C9左移一位后的值与(0001 1011)求异或。同理可以求出另外几个值。

2) 逆向列混淆

逆向列混淆的原理图如下:

由于:

说明两个矩阵互逆,经过一次逆向列混淆后即可恢复原文。

这个操作相对简单,其依据的原理是“任何数和自身的异或结果为0”。加密过程中,每轮的输入与轮子密钥异或一次;因此,解密时再异或上该轮的轮子密钥即可恢复。

密钥扩展的原理图如下:

密钥扩展过程说明:

1)  将种子密钥按图(a)的格式排列,其中k0、k1、……、k15依次表示种子密钥的一个字节;排列后用4个32比特的字表示,分别记为w[0]、w[1]、w[2]、w[3];

2)  按照如下方式,依次求解w[j],其中j是整数并且属于[4,43];

3)  若j%4=0,则w[j]=w[j-4]⊕g(w[j-1]),否则w[j]=w[j-4]⊕w[j-1];

函数g的流程说明:

a)  将w循环左移8比特;

b)  分别对每个字节做S盒置换;

c)  与32比特的常量(RC[j/4],0,0,0)进行异或,RC是一个一维数组,其值如下。(RC的值只需要有10个,而此处用了11个,实际上RC[0]在运算中没有用到,增加RC[0]是为了便于程序中用数组表示。由于j的最小取值是4,j/4的最小取值则是1,因此不会产生错误。)

RC = {0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36}

密码算法要求是可逆的,这样解密算法才能正确的恢复明文。拿AES来说,在密钥固定的情况下,明文和密文在整个输入空间是一一对应的。因此算法的各个部件也都是可逆的,再将各个部件的操作顺序设计成可逆的,密文就能正确的解密了。

自己写了一份AES-128的实现代码,放在Github上;另外一份AES代码实现了3种密钥长度的算法,和标准文档完全保存一致,没有做任何优化,有兴趣可以看看。

AES中列混淆部分设计有限域乘法操作,在运行中需要消耗较多的时间。现在的计算平台都拥有丰富的软件资源(RAM、Flash等),因此AES的软件实现一般都会采用查表的方式,将字节替代、行移位、列混淆合在一起查表,大概消耗8-10K字节的存储空间,但效率非常之高。

在硬件上,为了减少实现面积,可以通过对解密的操作进行适当调换,这样解密操作可以复用加密的电路。

SIMD [10]:单指令流多数据流指令,最常用的包括SSE、SSE2、AVX、AVX512 [5] 等,现在很多Intel和AMD的处理器都支持。SIMD操作能够很大地提高效率,一些项目中都有用到,比如libsodium [6](A modern and easy-to-use crypto library)、FastMemcpy [7] (Speed-up over 50% in average vs traditional memcpy in gcc 4.9 or vc2012 )、hamming_weight [8] (C library to compute the Hamming weight of arrays)等。

AES-NI [9]:AES硬件指令,能够很快地实现AES加解密,大部分Intel处理器、AMD处理器支持。

[1] William Stallings著;王张宜等译. 密码编码学与网络安全——原理与实践(第五版)[M]. 北京:电子工业出版社,2012.1.

[2] Daemen J, Rijmen V. AES proposal: Rijndael[J]. 1998.

[3] Advanced Encryption Standard, https://en.wikipedia.org/wiki/Advanced_Encryption_Standard, 2017年3月获取.

[4] Joan Daemen and Vincent Rijmen, The Design of Rijndael, AES - The Advanced Encryption Standard, Springer-Verlag 2002 (238 pp.)

[5] SSE, SSE2, AVX, AVX512等, https://software.intel.com/sites/landingpage/IntrinsicsGuide/, 2017年6月获取.

[6] Libsodium, https://github.com/jedisct1/libsodium, 2017年6月获取.

[7] FastMemcpy, https://github.com/skywind3000/FastMemcpy, 2017年6月获取.

[8] Hamming_weight, https://github.com/CountOnes/hamming_weight, 2017年6月获取.

[9] AES-NI, https://en.wikipedia.org/wiki/AES_instruction_set, 2017年6月获取.

[10] SIMD, https://en.wikipedia.org/wiki/SIMD, 2017年6月获取.

2017.11.19

  a) 完善了评选指标的说明;

2017.06.03

  a) 列混淆中加法是模28,不是模2;

  b) 增加了SIMD和AES-NI的介绍;

2017.03.15

  a) 增加了Rijndael和AES的区别;b) 增加了参考文献;c) 提到AES查表的实现;d) 循环移位不以字节为单位,统一改成比特;

  e) 修复了Rijndael算法链接的错误;f) 更正了错别字;

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容

  • 上次的文章中对常用的加密算法进行了一些简单的介绍,这次我们就挑一个出来说说,今天的主角的是对称加密中的当头大哥AE...
    张囧瑞阅读 23,744评论 10 31
  • 目录一、对称加密 1、对称加密是什么 2、对称加密的优点 3、对称加密的问题 4、对称加密的应用场景 5、对称加密...
    意一ineyee阅读 61,892评论 8 110
  • CTF中那些脑洞大开的编码和加密 0x00 前言 正文开始之前先闲扯几句吧,玩CTF的小伙伴也许会遇到类似这样的问...
    查无此人asdasd阅读 6,004评论 0 19
  • 因为要写一个小工具,需要使用对称加密算法,算法暂时选择AES算法。下面是具体的算法:本文转自:http://www...
    vv源vv阅读 2,373评论 0 49
  • 1. 定价:既有客观估值,也有主观估值;如何让自己的成本更低,让用户需求值更高(奢侈品策略) 2. 技巧:用户往往...
    煜糦阅读 159评论 0 0