Hadoop

HDFS

HDFS概述

HDFS(Hadoop Distributed File System)是 Hadoop 项目的一个子项目。是 Hadoop 的核心组件之一, Hadoop 非常适于存储大型数据 (比如 TB 和 PB),其就是使用 HDFS 作为存储系统. HDFS 使用多台计算机存储文件,并且提供统一的访问接口,像是访问一个普通文件系统一样使用分布式文件系统


image.png

HDFS架构

image.png

HDFS有三个核心组件,分别是NameNode,DataNode,SecondaryNamenode:
NameNode:存储数据的元数据信息,不存储具体的数据
-管理HDFS的名称空间
-管理数据库的映射信息
-配置副本测量
-处理客户端读写请求
DataNode:负责管理用户的文件数据块,每一个数据块都可以在多个 DataNode 上存储多个副本,默认为3个。
-存储实际的数据库
-执行数据块的读写操作
SecondaryNamenode:最主要作用是辅助 NameNode 管理元数据信息。

HDFS的特性

HDFS的读写流程

读流程
1.客户端发送请求到NAMENODE
2.NAMENODE检查是否有权限,读取的文件是否存在,如果存在的话,
如果都无误则将文件所在最近的DataNode的节点位置,发送给客户端部分或者全部的DataNode的节点位置
3.客户端得到文件块存储的位置后,会调用read()方法,去读取数据
4.在读取之前会先进行一个checksum的操作,去判断一下校验和是否正确,正确则读,不正确则去下一个存放该block块的DataNode节点上读取
5.读取完NameNode这次发送过来的所有的block块后,会再去询问是否还有block块,如果有则接着读取,如果没有则调用close方法,将读取到的文件合并成一个大文件
写流程
1.客户端提交请求到NAMENODE的同时,把文件切分成block块
2.NAMENODE检查是否权限,同时上传位置的父级目录是否存在,没问题的话,就找到三个DATANODE的地址,然后我们可以称之为ABC,返回给客户
3.客户端会去ABC三个DataNode节点上建立pipeline A-B B-C然后C建立完成后会将结果返回给B B返回给A A返回给客户端
4.开始往A写入 依次进行流水线的复制,重复上述过程就完成写入
总结:从 HDFS 文件读写过程中,可以看出,HDFS 文件写入时是串行写入的,数据包先发送给节点A,然后节点A发送给B,B在给C;而HDFS文件读取是并行的, 客户端 Client 直接并行读取block所在的节点。

HDFS的其他功能

1.本地文件拷贝scp
2.不同集群就是distcp

hadoop归档文件archive

二、MapReduce

MapReduce的概念

MapReduce思想在生活中处处可见。或多或少都曾接触过这种思想。MapReduce的思想核心是“分而治之”,适用于大量复杂的任务处理场景(大规模数据处理场景)。
Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。可以进行拆分的前提是这些小任务可以并行计算,彼此间几乎没有依赖关系。
Reduce负责“合”,即对map阶段的结果进行全局汇总。
MapReduce运行在yarn集群
-ResourceManager
-NodeManager

MapReduce 编程规范

1.map有两个阶段,shuffle有四个阶段,reduce有两个阶段
MAP:
-设置 InputFormat 类, 将数据切分为 Key-Value(K1和V1) 对, 输入到第二步
-自定义 Map 逻辑, 将第一步的结果转换成另外的 Key-Value(K2和V2) 对, 输出结果
SHUFFLE
-对输出的 Key-Value 对进行分区
-对不同分区的数据按照相同的 Key 排序
-对数据进行分组, 相同 Key 的 Value 放入一个集合中
REDUCE
-对多个 Map 任务的结果进行排序以及合并, 编写 Reduce 函数实现自己的逻辑, 对输入的 Key-Value 进行处理, 转为新的 Key-Value(K3和V3)输出
-设置 OutputFormat 处理并保存 Reduce 输出的 Key-Value 数据

yarn的架构和原理

YARN是Hadoop2引入的通用的资源管理和任务调度的平台,可以在YARN上运行MapReduce、Tez、Spark等多种计算框架,只要计算框架实现了YARN所定义的接口,都可以运行在这套通用的Hadoop资源管理和任务调度平台上。
MAPREDUCE的缺点:
扩展性差,可靠性低,资源利用率低,不支持多种计算框架
YARN的优点:
数据可共享,运维成本低,资源利用率高,支持多种计算框架

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,386评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,142评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,704评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,702评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,716评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,573评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,314评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,230评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,680评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,873评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,991评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,706评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,329评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,910评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,038评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,158评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,941评论 2 355

推荐阅读更多精彩内容