几个余数的定理和性质以及它们的应用

数论中除了整除以外,还有一个很重要也很难的知识点,就是余数,理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了,这样就需要用到余数中一个非常重要的定理—同余定理。

同余定义
如果a,b除以c的余数相同,就称a,b对于除数c来说是同余的,且有a与b的差能被c整除.(a,b,c均为自然数)
例如:17与13除以3的余数都是2,所以(17-11)能被3整除.

同余定理
①如果 a%b = c, 则有(a+kb)%b = c; (k为非0整数)
②如果 a%b = c, 则有(k*a)%b = k*c%b; (k为正整数)
③(a+b)%c = ((a%c) + (b%c)) % c;
④(a*b)%c = ((a%c)*(b%c)) % c;

(一)可加性
a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数).
例如:23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4.
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数.
例如:23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。

(二)可减性
a与b的差除以c的余数,等于a,b分别除以c的余数之差.
例如:23,16除以5的余数分别是3和1,所以(23-16)除以5的余数等于3-1=2.
注意:当较大数的余数小于较小数的余数时,所求余数等于c减去余数之差.
例如:23,19除以5的余数分别是3和4,所以 除以(23-19)的余数等于5-(4-3)=4.

(三)可乘性
a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数).
例如:23,16除以5的余数分别是3和1,所以除以5的余数等于3*1 = 3.
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数.
例如:23,19除以5的余数分别是3和4,所以 除以5的余数等于3*4除以5的余数.

(四)乘方性
如果a与b除以m的余数相同,那么a^n与b^n除以m的余数也相同,但不一定等于原余数.
例如:3,7除以4的余数都是3,可以算得3^2和7^2除以4的余数都等于1,它们的余数相等但不一定等于3.
余数判别法
当一个数N不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N被m除的余数”,我们希望找到一个较简单的数R,使得:N与R对于除数m同余.由于R是一个较简单的数,所以可以通过计算R被m除的余数来求得N被m除的余数.

下面列出几个常用到的规律:

  • 整数N被2或5除的余数等于N的个位数被2或5除的余数;
  • 整数N被4或25除的余数等于N的末两位数被4或25除的余数;
  • 整数N被8或125除的余数等于N的末三位数被8或125除的余数;
  • 整数N被3或9除的余数等于其各位数字之和被3或9除的余数;
  • 整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;

再加一个整理的结论:
能被7、13、11整除的特征(实际是一个方法)是这样的:
将一个多于4位的整数在百位与千位之间分为两截,形成两个数,左边的数原来的千位、万位成为个位、十位(依次类推)。
将这两个新数相减(较大的数减较小的数),所得的差不改变原来数能被7、11、13整除的特性,如果所得的差依然大于999,再次进行上一步,直到所得的差小于1000为止。
例如:判断71858332能否被7、11、13整除,这个数比较大,
将它分成71858、332两个数(右边是三位数)
71858-332=71526;
再将71526分成71、526两个数(右边是三位数)
526-71=455;
由于455数比原数小得多,
相对来说容易判断455能被7和13整除,不能被11整除,
所以原来的71858332能被7和13整除,不能被11整除。

同余问题

"差同减差,和同加和,余同取余,最小公倍加"

所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。

1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,
此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。

2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

3、余同取余:用一个数除以几个不同的数,得到的余数相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,
称为:“最小公倍加”,也称为:“公倍数作周期”。

一般关于余数的题目根据"差同减差,和同加和,余同取余,最小公倍加"就可以解出正确答案,但是好多关于余数的题目,不是仅仅知道上面17个字就能解题的,是对余数三大定理的灵活应用。

下面列几个例题,涉及中国剩余定理和大数求余通过同余性质化大为小

image.png

image.png

image.png

image.png

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • 第一章数和数的运算 一概念 (一)整数 1整数的意义 自然数和0都是整数。 2自然数 我们在数物体的时候,用来表示...
    meychang阅读 2,592评论 0 5
  • 小学奥数其实很简单,以下是这六个部分的知识点! 1 第一部分(知识点1-6) 2、年龄问题的三个基本特征: ①两个...
    小一哥阅读 1,316评论 0 3
  • 小学奥数的知识点约 80个,总体上可以分为五大类。数论和行程问题是小 学奥数学习中的重点也是难点。 一、 计算能力...
    ADolphin阅读 7,546评论 1 3
  • 小升初的过程中,竞赛成绩能起到相当大的作用,谈到竞赛就离不开奥数。以下是小学奥数题知识点大汇总: 1.和差倍问题 ...
    沪江中小幼阅读 1,130评论 0 7
  • 我怎么倒下,我身后空无一人,我这一生节节败退,愚守子虚乌有,到最后你还是不曾爱过我。 万千...
    南山yu阅读 383评论 0 0