MATLAB深度学习工具箱使用教程

一、introduction

深度学习对于图像识别

二、using pretrained Networks

1、加载并显示图像

img1 = imread('file01.jpg');

imshow(img1)

2、预测

deepnet = alexnet; %获取预训练模型

pred1 = classify(deepnet, img1); %预测img1

3、获取其他预训练模型




4、examine network layers


deepnet = alexnet;  %获取预训练网络

ly = deepnet.Layers;%获取网络layers

inlayer = ly(1); %获取输入层结构

insz = inlayer.InputSize; %获取输入层size

outlayer = ly(end); %获取输出层

categorynames = outlayer.Classes; %获取最后一层的class

5、investigating predictions

分类函数返回输入图像的预测类,但是有办法知道网络对这个分类有多“自信”吗?在决定如何处理输出时,考虑这种信心可能很重要。

为了将输入分类为n个类中的一个,神经网络有一个由n个神经元组成的输出层,每个神经元对应一个类。通过网络传递输入结果是为每个神经元计算一个数值。这些数值表示网络对属于每个类的输入概率的预测。


img = imread('file01.jpg');

imshow(img)

net = alexnet;

categorynames = net.Layers(end).ClassNames;

[pred, scores] = classify(net, img);  %获得预测结果和自信分数

bar(scores); %Display scores

highscores = scores > 0.01; %Threshold scores

bar(scores(highscores)); %Display thresholded scores

xticklabels(categorynames(highscores)); %Add tick labels

三、managing collections of data

1、creating a datastore

ls *.jpg

net = alexnet;

imds = imageDatastore('file*.jpg'); %创建datastore

fname = imds.Files; %提取文件名

img = readimage(imds, 7);  %读取图像

preds = classify(net, imds); %图片分类


2、 Preparing Images to Use as Input: Adjust input images

Process Images for Classification

img = imread('file01.jpg');

imshow(img);

sz = size(img);  %读取图像大小

net = alexnet;

insz = net.Layers(1).InputSize;  %输入层图像大小

img = imresize(img, [227, 227]);  

imshow(img);

3、Processing Images in a Datastore: (2/3) Creating an augmented image datastore

Resize Images in a Datastore

ls *.jpg

net = alexnet;

imds = imageDatastore('*.jpg');

auds = augmentedImageDatastore([227,227], imds); %Create augmentedImageDatastore

preds = classify(net, auds)

Processing Images in a Datastore: (3/3) Color preprocessing with augmented image datastores

augmentedImageDatastore可以对彩色图片进行处理

ls *.jpg

net = alexnet;

imds = imageDatastore('file*.jpg');

montage(imds); %Display images in imds

auds = augmentedImageDatastore([227,227], imds, 'ColorPreprocessing', 'gray2rgb') %Create augmentedImageDatastore

preds = classify(net, auds)

Create a Datastore Using Subfolders

net = alexnet;

flwrds = imageDatastore('Flowers', 'IncludeSubfolders',true);

preds = classify(net,flwrds)

四、transfer learn

1、原因

(1)原有NET不能解决有效自己的问题

(2)自己训练一个全新的网络--网络结构与随机权重,需要具有网络架构方面的知识和经验、大量的训练数据、大量的计算时间

2、Components Needed for Transfer Learning: (1/2) The components of transfer learning


3、 Preparing Training Data: (1/3) Labeling images

Label Images in a Datastore

load pathToImages

flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true);  %This code creates a datastore of 960 flower images.

flowernames = flwrds.Labels

flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames')  %Create datastore with labels

flowernames = flwrds.Labels  %Extract new labels

Preparing Training Data: (2/3) Split data for training and testing

Split Data for Training and Testing

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code creates a datastore of 960 flower images.

load pathToImages

flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames')

Task 1

Split datastore

[flwrTrain, flwrTest] = splitEachLabel(flwrds, 0.6)

Task 2

Split datastore randomly

[flwrTrain, flwrTest] = splitEachLabel(flwrds, 0.8, 'randomized')

Task 3

Split datastore by number of images

[flwrTrain, flwrTest] = splitEachLabel(flwrds,50)


Preparing Training Data: (3/3) Augmented training data


4、微调思路
(1)Recall that a feed-forward network is represented in MATLAB as an array of layers. This makes it easy to index into the layers of a network and change them.

(2)To modify a preexisting network, you create a new layer

(3)then index into the layer array that represents the network and overwrite the chosen layer with the newly created layer.

(4)As with any indexed assignment in MATLAB, you can combine these steps into one line.

Modifying Network Layers: (2/2) Modify layers of a pretrained network

Modify Network Layers

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code imports AlexNet and extracts its layers.

anet = alexnet;

layers = anet.Layers

Task 1

Create new layer

fc = fullyConnectedLayer(12)

Task 2

Replace 23rd layer

layers(23) = fc

Task 3

Replace last layer

layers(end) = classificationLayer

Setting Training Options

Set Training Options

Instructions are in the task pane to the left. Complete and submit each task one at a time.

Task 1

Set default options

opts = trainingOptions('sgdm');

Task 2

Set initial learning rate

opts = trainingOptions('sgdm','InitialLearnRate',0.001);

Training the Network: (4/4) Summary example

Transfer Learning Example Script

The code below implements transfer learning for the flower species example in this chapter. It is available as the script trainflowers.mlx in the course example files. You can download the course example files from the help menu in the top-right corner. You can find more information on this dataset at the 17 Category Flower Dataset page from the University of Oxford. 

Note that this example can take some time to run if you run it on a computer that does not have a supported GPU.

Get training images

flower_ds = imageDatastore('Flowers','IncludeSubfolders',true,'LabelSource','foldernames');[trainImgs,testImgs] = splitEachLabel(flower_ds,0.6);numClasses = numel(categories(flower_ds.Labels));


Create a network by modifying AlexNet

net = alexnet;layers = net.Layers;layers(end-2) = fullyConnectedLayer(numClasses);layers(end) = classificationLayer;


Set training algorithm options

options = trainingOptions('sgdm','InitialLearnRate', 0.001);


Perform training

[flowernet,info] = trainNetwork(trainImgs, layers, options);


Use trained network to classify test images

testpreds = classify(flowernet,testImgs);

4.7 Evaluating Performance: (1/3) Evaluating training and test performance

Evaluate Performance

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code loads the training information of flowernet.

load pathToImages

load trainedFlowerNetwork flowernet info

Task 1

Plot training loss

plot(info.TrainingLoss)

This code creates a datastore of the flower images.

dsflowers = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames');

[trainImgs,testImgs] = splitEachLabel(dsflowers,0.98);

Task 2

Classify images

flwrPreds = classify(flowernet,testImgs)

Evaluating Performance: (2/3) Investigating test performance

Investigate test performance

Instructions are in the task pane to the left. Complete and submit each task one at a time.

This code sets up the Workspace for this activity.

load pathToImages.mat

pathToImages

flwrds = imageDatastore(pathToImages,'IncludeSubfolders',true,'LabelSource','foldernames');

[trainImgs,testImgs] = splitEachLabel(flwrds,0.98);

load trainedFlowerNetwork flwrPreds

Task 1

Extract labels

flwrActual = testImgs.Labels

Task 2

Count correct

numCorrect = nnz(flwrPreds == flwrActual)

Task 3

Calculate fraction correct

fracCorrect = numCorrect/numel(flwrPreds)

Task 4

Display confusion matrix

confusionchart(testImgs.Labels,flwrPreds)

Evaluating Performance: (3/3) Improving performance

MATLAB Course

Transfer Learning Summary

Transfer Learning Function Summary

Create a network

FunctionDescription

alexnetLoad pretrained network “AlexNet”

supported networksView list of available pretrained networks

fullyConnectedLayerCreate new fully connected network layer

classificationLayerCreate new output layer for a classification network


Get training images

FunctionDescription

imageDatastoreCreate datastore reference to image files

augmentedImageDatastorePreprocess a collection of image files

splitEachLabelDivide datastore into multiple datastores


Set training algorithm options

FunctionDescription

trainingOptionsCreate variable containing training algorithm options


Perform training

FunctionDescription

trainNetworkPerform training


Use trained network to perform classifications

FunctionDescription

classifyObtain trained network's classifications of input images


Evaluate trained network

FunctionDescription

nnzCount non-zero elements in an array

confusionchartCalculate confusion matrix

heatmapVisualize confusion matrix as a heatmap

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容

  • 有这样传说“梦,是另一个世界你的写照,白天你在这个世界,待到你睡着之时又在另一个世界生活着。没有人知道是什么原因。...
    曲沙南风阅读 265评论 5 20
  • 早上9点半,做了一小时的方案,有点累有点困,这时电话打来, “您好,某东快递,请您下楼来签收一下,然后我们帮您送楼...
    橘阿撩阅读 101评论 0 0