Python--数据分析概述

为什么使用Python进行数据分析

  • Python拥有巨大而活跃的科学计算社区
  • Python不断改良的库(主要是pandas)
  • Python作为胶水语言,轻松集成C,C++以及Fortran代码
    但对于高并发,多线程的应用程序,python并不是一种理想的语言

Python进行数据分析的重要库

  • Numpy: python进行科学计算的基础包
    • 快速高效的多维数组对象ndarray
    • 可以直接对元素以及数组进行数学运算
    • 读写基于数组的数据集
    • 包含线性代数/傅里叶变换/随机数生成等方法
    • 用于将C/C++/Fortran代码集成到Python的工具.低级语言可直接操作Numpy数组中的数据
  • Pandas: 高效快捷底处理结构化数据的大量数据结构和函数
    • 拥有Numpy高性能的数组计算功能
    • 表格和关系型数据库的数据处理功能
    • 索引/重塑/切片/切块/聚合等便捷操作
  • Matplotlib: 用于绘制图表的Python库
  • Ipython/Jupyter: 由Python科学计算标准工具集组成,为交互式探索式计算提供了强健高效的环境
  • SciPy: 一组专门解决科学计算中各种标准问题的包的集合

Anaconda的安装

Why?
- 可以在一个安装步骤中得到100多个最重要的Python库和软件包,且所有库与软件包相互配合(几乎包含了所有数据分析的库)
- 分发版本免费
- 可以用于Windows\MacOS\Linux平台
Anaconda下载地址

Ipython/jupyter中的魔法命令及快捷键

image

快捷键:

命令模式 (按键 Esc 开启)

  • Enter : 转入编辑模式
  • Shift-Enter : 运行本单元,选中下个单元
  • Ctrl-Enter : 运行本单元
  • Alt-Enter : 运行本单元,在其下插入新单元
  • Y : 单元转入代码状态
  • M :单元转入markdown状态
  • R : 单元转入raw状态
  • 1 : 设定 1 级标题
  • 2 : 设定 2 级标题
  • 3 : 设定 3 级标题
  • 4 : 设定 4 级标题
  • 5 : 设定 5 级标题
  • 6 : 设定 6 级标题
  • Up : 选中上方单元
  • K : 选中上方单元
  • Down : 选中下方单元
  • J : 选中下方单元
  • Shift-K : 扩大选中上方单元
  • Shift-J : 扩大选中下方单元
  • A : 在上方插入新单元
  • B : 在下方插入新单元
  • X : 剪切选中的单元
  • C : 复制选中的单元
  • Shift-V : 粘贴到上方单元
  • V : 粘贴到下方单元
  • Z : 恢复删除的最后一个单元
  • D,D : 删除选中的单元
  • Shift-M : 合并选中的单元
  • Ctrl-S : 文件存盘
  • S : 文件存盘
  • L : 转换行号
  • O : 转换输出
  • Shift-O : 转换输出滚动
  • Esc : 关闭页面
  • Q : 关闭页面
  • H : 显示快捷键帮助
  • I,I : 中断Notebook内核
  • 0,0 : 重启Notebook内核
  • Shift : 忽略
  • Shift-Space : 向上滚动
  • Space : 向下滚动

编辑模式 ( Enter 键启动)

  • Tab : 代码补全或缩进
  • Shift-Tab : 提示
  • Ctrl-] : 缩进
  • Ctrl-[ : 解除缩进
  • Ctrl-A : 全选
  • Ctrl-Z : 复原
  • Ctrl-Shift-Z : 再做
  • Ctrl-Y : 再做
  • Ctrl-Home : 跳到单元开头
  • Ctrl-Up : 跳到单元开头
  • Ctrl-End : 跳到单元末尾
  • Ctrl-Down : 跳到单元末尾
  • Ctrl-Left : 跳到左边一个字首
  • Ctrl-Right : 跳到右边一个字首
  • Ctrl-Backspace : 删除前面一个字
  • Ctrl-Delete : 删除后面一个字
  • Esc : 进入命令模式
  • Ctrl-M : 进入命令模式
  • Shift-Enter : 运行本单元,选中下一单元
  • Ctrl-Enter : 运行本单元
  • Alt-Enter : 运行本单元,在下面插入一单元
  • Ctrl-Shift-- : 分割单元
  • Ctrl-Shift-Subtract : 分割单元
  • Ctrl-S : 文件存盘
  • Shift : 忽略
  • Up : 光标上移或转入上一单元
  • Down :光标下移或转入下一单元
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容