《概率机器人》学习笔记之短序一二

《概率机器人》目前我仅大概过了一遍第I部分和第II部分,便发现这本书结构非常清晰,主要把第一部分的基础理论学扎实,后面的第II和第III部分便不会学得头大.


A mobile robot estimating the state of a door.

第I部分

第2~4章主要介绍了构成所有算法基础的数学基础:

首先引入概率机器人技术的核心就是由传感器数据来估计状态这个思路,对概率机器人进行建模时,引出了先验概率、后验概率等概念,进而引出了本书理论的基石-贝叶斯准则.在贝叶斯准则的基础上,讨论了贝叶斯滤波算法马尔科夫假设.但这里的贝叶斯滤波器仅是介绍了一个框架,具体的概率模型并没有提及,也就是说还未交代如何实现的?所以作者紧接着便开始阐述两大类贝叶斯滤波器的具体实现方式.

贝叶斯滤波算法中的概率模型用高斯概率模型表示时,此类递归状态估计器则称为高斯滤波.线性高斯滤波中最有名的当属卡尔曼滤波(KF).但并不是所有系统都是线性化的,所以,便有了扩展卡尔曼滤波无迹卡尔曼滤波,这两种滤波放宽了线性化假设.但计算时,仍需要将非线性系统近似为线性系统进行计算,扩展卡尔曼滤波采用了泰勒级数展开的线性化技术,而无迹卡尔曼滤波采用了无迹变换.

Illustration of Kalman filters

我们知道,上述方法都依赖于确定的后验概率,于是便有了非参数化滤波技术,直方图滤波粒子滤波便出场了,这两种滤波不需要对后验密度进行强参数化假设,并且,能够很好地表示复杂的多峰置信度(想想高斯滤波的单峰).另外,贝叶斯滤波也从前面的连续贝叶斯滤波变为离散贝叶斯滤波(笔者曰:贝叶斯准则真的要好好理解,相当重要).
Different ways of extracting densities from particles

到此,本书关于贝叶斯滤波的具体实现方式已经介绍完毕,也就是我们已经知道了状态转移估计模型,但是,似乎机器人的运动控制概率模型观测模型还不知道.别急,特龙博士又要介绍新东西了.

第5章主要介绍了机器人运动模型:
根据控制量u的不同,可以分类速度运动模型里程计运动模型.

速度运动模型

里程计运动模型

第6章主要介绍了机器人观测模型:
首先,从实际物理模型出发,引出了测距仪的波束模型.当然,这个波束模型有缺点,那么便提出了另一种测距仪的似然域模型,然后还提到了基于相关性特征的测量模型.
波束模型1
波束模型2
似然域模型

第I部分完...结构还是很清晰的,但如果只是单纯学习了这些数学工具,不知道怎么用,也是很蒙圈的.特龙博士很懂你啊,第II部分便告诉你,前面那么工具是如何组合,变成一个个定位算法的.

第II部分

第7章可以看做上述高斯滤波在定位中应用

  • 马尔科夫定位=贝叶斯滤波+马尔科夫准则


    马尔科夫定位
  • 扩展卡尔曼定位=EKF+运动模型+基于特征的测量模型

  • 无迹卡尔曼定位=UKF+运动模型+基于特征的测量模型

第8章可以看作是非参数滤波在定位中的应用

  • 栅格定位=栅格分解+直方图滤波

  • 蒙特卡罗定位=粒子滤波定位

第I部分和第II部分我仅仅是过了一遍,对其中的细节和公式推导理解得还不充分,所以打算在上述框架上重新撸一遍.

奉劝各位看这本书的朋友,一定一定要把第I部分和第II部分理解透了,磨刀不误砍柴工!

参考文献

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容