激活函数

参考:https://blog.csdn.net/kangyi411/article/details/78969642
一 、sigmoid函数
公式:

image.png
缺点:

  1. 当输入稍微远离了坐标原点,函数的梯度就变得很小了,几乎为零。在神经网络反向传播的过程中,通过微分的链式法则来计算各个权重w的微分的。当反向传播经过了sigmod函数,这个链条上的微分就很小了,况且还可能经过很多个sigmod函数,最后会导致权重w对损失函数几乎没影响,这样不利于权重的优化,这个问题叫做梯度饱和,也可以叫梯度弥散。

  2. 函数输出不是以0为中心的,这样会使权重更新效率降低。对于这个缺陷,在斯坦福的课程里面有详细的解释。

  3. sigmod函数要进行指数运算,这个对于计算机来说是比较慢的。

二、tanh函数

公式:
image.png

缺点:在输入很大或是很小的时候,输出都几乎平滑,梯度很小,不利于权重更新;不同的是输出区间,tanh的输出区间是在(-1,1)之间,而且整个函数是以0为中心的,这个特点比sigmod的好。

三、relu函数

公式:
image.png

优点:

  1. 在输入为正数的时候,不存在梯度饱和问题。
  2. 计算速度要快很多。ReLU函数只有线性关系,不管是前向传播还是反向传播,都比sigmod和tanh要快很多。(sigmod和tanh要计算指数,计算速度会比较慢

缺点:

  1. 当输入是负数的时候,ReLU是完全不被激活的,这就表明一旦输入到了负数,ReLU就会死掉。这样在前向传播过程中,还不算什么问题,有的区域是敏感的,有的是不敏感的。但是到了反向传播过程中,输入负数,梯度就会完全到0,这个和sigmod函数、tanh函数有一样的问题。
  2. 我们发现ReLU函数的输出要么是0,要么是正数,这也就是说,ReLU函数也不是以0为中心的函数。

四、elu函数

公式:
image.png

ELU函数是针对ReLU函数的一个改进型,相比于ReLU函数,在输入为负数的情况下,是有一定的输出的,而且这部分输出还具有一定的抗干扰能力。这样可以消除ReLU死掉的问题,不过还是有梯度饱和和指数运算的问题。

五、prelu函数

公式:
image.png

PReLU也是针对ReLU的一个改进型,在负数区域内,PReLU有一个很小的斜率,这样也可以避免ReLU死掉的问题。相比于ELU,PReLU在负数区域内是线性运算,斜率虽然小,但是不会趋于0,这算是一定的优势吧。

PReLU的公式里面的参数α一般是取0~1之间的数,而且一般还是比较小的,如零点零几。当α=0.01时,我们叫PReLU为Leaky ReLU,算是PReLU的一种特殊情况吧。

六、python code:

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

#Sigmoid函数
def sigmoid(x):
    return 1/(1+np.exp(-x))

#tanh 函数
def tanh(x):
    return ((np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x)))

#  a if a>b else b先执行中间的if,如果返回True,就是左边,False是右边。
#relu函数
def relu(x):
    # return np.fmax(0,x)
    return np.where(x<0,0,x)

#elu函数
def elu(x):
    a=0.2
    return np.where(x>0,x,a*(np.exp(x)-1))

#prelu函数
def prelu(x):
    a=0.3
    return np.maximum(a*x,x)

x=np.linspace(-10,10,10000)
y1=sigmoid(x)
y2=tanh(x)
y3=relu(x)
y4=elu(x)
y5=prelu(x)
plt.figure(12)
plt.subplot(321)
plt.plot(x,y1)
# plt.title('sigmoid')

plt.text(-8, 0.8, u"sigmoid", color="blue", fontsize=12)
plt.subplot(322)
plt.plot(x,y2)
# plt.title('tanh')
plt.text(-8, 0.8, u"tanh", color="blue", fontsize=12)

plt.subplot(323)
plt.plot(x,y3)
# plt.title('relu')
plt.text(-8, 8, u"relu", color="blue", fontsize=12)

plt.subplot(324)
plt.plot(x,y4,label='elu')
# plt.title('elu',fontsize=12)
plt.text(-8, 8, u"elu", color="blue", fontsize=12)

plt.subplot(313)#3行1列第第3行
plt.plot(x,y5)
# plt.title('prelu')
plt.text(-8, 8, u"prelu", color="blue", fontsize=12)

plt.show()

七、各函数曲线图:

image

matplotlib绘图可视化知识点整理:https://www.cnblogs.com/zhizhan/p/5615947.html
subplot绘制多个子图:
https://blog.csdn.net/gatieme/article/details/61416645
python分段函数实现:
https://blog.csdn.net/shu15121856/article/details/76080060
https://blog.csdn.net/dodwind/article/details/86529548
Markdown语法参考
https://blog.csdn.net/witnessai1/article/details/52551362

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343