Excel数据挖掘插件

Excel是大家非常熟悉的表格工具,借助它可以实现日程工作中最原始的数据处理的基本的功能,此外通过 SQL Server插件的支持,我们也可以在Excel中实现数据挖掘的功能。

此篇将先介绍Excel数据挖掘中的数据准备工作下的相关功能。

对于Excel 2010和2013来说,需要安装SQL Server的Excel数据挖掘插件才可以实现数据挖掘的功能,下载地址:

http://www.microsoft.com/en-us/download/details.aspx?id=35578

下载的时候需要注意的是下载的语言版本和x86以及x64的版本要对应得上。

安装完成后,可以在开始屏幕找到示例数据链接:

打开示例数据,可以看到在Excel文件下示例数据在不同的Sheet中。

点击其中的Sheet,可以看到此篇演示需要用到的示例数据。这是一张经过组织的客户信息表,里面包含了客户的基本信息,比如婚姻状况,性别,收入以及教育程度等信息。此外还包含一个状态列记录这个用户是否购买了自行车。

在Ribbon工具栏中可以找到数据挖掘工具集DATA MINING。

此篇介绍的是Data Preparation数据准备下的三个功能:Explorer Data浏览数据, Clean Data清除数据(这里我不太认同官方的翻译,清理数据在这里可能更贴切些。)和Sample Data示例数据。

首先点击浏览数据,浏览数据可以帮助我们在第一时间内通过这个功能对数据进行很方便的浏览。

在第一个界面中指定数据的范围。默认选择第一个选项,是一个sheet下的所有数据,如果是第二个选项的意思是选中的数据。这里选择默认选项,点击下一步。

在接下来的界面中,任意指定数据的一列,比如Region,然后点击下一步。

可以看到根据此列生成的数据图表。

此外,如果在先前选择的是连续类型的列,这个图标会自动组织成离散样式的。

留意到Buckets,可以指定数值被打散成几列。

打散之后的列可以通过点击界面右下角的Add New Column按钮将离散的列附加到工作表中。

此外,留意界面做小角的两个按钮:

左边的按钮是让数据以离散的方式显示,所以当前面如果选中的是Age列的话,它会认为每一个年龄信息都是一个离散的值,所以编程了这个样子。右面的按钮是以连续的方式显示,选中这个方式后系统会认为数字列是连续类型的,所以会自动将连续类型的数字打散成离散的分组。

以上是对浏览数据的介绍,通过这个工具可以快速的对数据的情况有一个大体的了解,此外也可以通过离散化的方式向数据表中填加附加的列。

接下来介绍的是数据清理功能,分别是Outliers和Re-label。

首先介绍Outliers功能,这个功能可以帮助我们清理一些边缘数据,具体的功能请先看喜爱安的实现步骤。

点击Outliers,跟前面一样指定好范围之后,选中一个列。

跟浏览数据一样,可以看到不同Distance的数量分布。

通过拖动上访的滑块,可以指定尾部的哪部分数据被清理掉。

继续往前滑动,可以扩大清理数据的范围。

点击下一步,指定如何处理这些数据,这里有三个选项,默认的是将值转换成Other,让它们都合并为一类,第二个选项是将值清空,第三个是将数据删除。这里选择第一个。

最后,指定划分划分之后的数据如何处理,也是有三个选项,一个是作为一个新列填加,第二个是将变更的数据拷贝到一个新的工作簿中,最后一个是直接在数据表中修改。这里默认选择第一个。

点击完成之后,可以看到根据Distance列附加的新列被加到了工作表中,并且,刚才指定清理掉的数据全部被转换成了Other以方便后续的处理。

这个功能可以理解为清理长尾数据,记得有一本书是书长尾理论的,它讲的是如何关注长尾部分的数据从而获取更大的收益。当然还有很多时候我们为了初步就获得数据的直观和大体的认识是不需要关注长尾部分的数据的,所以这个时候就可以借助这个功能来将其清理掉。

除了对长尾部分数据的清理,对于连续型的值,比如年龄,通常只有年龄段中间部分的数据才是我们需要关注的,所以当我们选择年龄时,可以看到界面变成下面的样子。

通过拖动两边的滑块,可以指定把哪部分数据划分到需要清理的数据。

接下来介绍Re-Label功能,这是一个很实用的功能,通过这个功能我们可以将数据打成另一个标签。

点击Re-Label,指定好数据范围之后,还是跟以前一样,选中一个列。

在下面的界面中,可以将这一列不同的值指定为新的标签。

比如,像下图一样将不同的距离指定成不同的远近标记。

最后,跟上一个功能一样,指定新标签的填加方式。

点击完成,可以看到新的列作为新标签列填加到了数据表中。

这里有一个问题是,对于连续型的数据,比如年龄要如何设定,因为我们不可能将每一个岁数,比如21岁另启一个标签,22岁再指定一个标签。所以对于这类连续型数据我们首先要做的是利用前面介绍的浏览数据功能将数据先转换成离散的,然后再通过这个功能将离散的值指派为另一个标签,比如0-6幼年,7-15少年等。

最后,介绍示例数据功能,再次吐槽一下官方翻译,Sample这里根据环境应该是样本才对,所以这个功能翻译成样本数据更贴切,因为它本身就是抽取样本数据的。

点击这个按钮后,在第一个界面中会给我们两个选择,一个是随机样本数据抽取,一个是过度样本数据抽取。

先来看第一个抽取方式,很简单,根据一定的百分比或者指定的行数来进行抽取。

设定好之后,可以指定把样本数据放到哪里,同时也可以指定将没有抽中的数据放到哪里。

点击完成之后,可以看到被抽中和没有被抽中的数据。

接下来过度样本数据抽取介绍起来可能比较绕口,但我们可以这样理解,比如当我们收到这样的需求,让你从数据中抽取1000行数据,但是要求这1000行数据中,已婚的比例要占到30%,当然,实际数据集中的数据,已婚的比例有可能是15%,也有可能是50%。所以如何让这1000行数据中恰巧占30%的比例,就可以通过这个功能来实现。

比如根据上面的例子,我们将已婚比例设置成30%,样本大小设置为10,这里为了演示没有设置成1000主要是为了后面方便结果的验证。

点击下一步,抽样的数据会被填加到一个新的工作表中,这里为其取一个名字。

点击完成之后,我们可以通过这10行数据看到这个功能的结果。

相信通过此篇的阅读,你已经对Excel数据挖掘插件有了大概的了解。数据的准备是数据挖掘中最初始的阶段,这一篇简单的介绍了在Excel的数据挖掘插件中的这三个功能。值得一提的是,此篇介绍的这些功能是完全在Excel中作为Client端完成的,不需要SQL Server分析服务的支持。下篇将要介绍的数据挖掘功能是需要SQL Server分析服务做支持的。

下面是网络上提供的SQL Server的安装程序:

SQL Server 2012 With SP1 官方简体中文版(64位版)

MICROSOFT SQL SERVER 2012 ENTERPRISE CORE: FH666-Y346V-7XFQ3-V69JM-RHW28

MICROSOFT SQL SERVER 2012 BUSINESS INTELLIGENCE: HRV7T-DVTM4-V6XG8-P36T4-MRYT6

MICROSOFT SQL SERVER 2012 DEVELOPER: YQWTX-G8T4R-QW4XX-BVH62-GP68Y

MICROSOFT SQL SERVER 2012 ENTERPRISE SERVER/CAL EDITION: 748RB-X4T6B-MRM7V-RTVFF-CHC8H

MICROSOFT SQL SERVER 2012 STANDARD: YFC4R-BRRWB-TVP9Y-6WJQ9-MCJQ7

MICROSOFT SQL SERVER 2012 WEB: FB3W8-YRXDP-G8F8F-C46KG-Q998F

转载于:http://www.17bigdata.com/excel数据挖掘插件.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容