reshape2 数据操作 数据融合( cast)

reshape2 数据操作 数据融合( cast)

我们在做数据分析的时候,对数据进行操作也是一项极其重要的内容,这里我们同样介绍强大包reshape2,其中的几个函数,对数据进行操作cast和melt两个函数绝对少不了。

首先是cast,把长型数据转换成你想要的任何宽型数据,

dcast(data, formula, fun.aggregate = NULL, ..., margins = NULL, subset = NULL, fill = NULL, drop = TRUE, value.var = guess_value(data))

acast(data, formula, fun.aggregate = NULL, ..., margins = NULL, subset = NULL, fill = NULL, drop = TRUE, value.var = guess_value(data))

acast,dcast的区别在于输出结果。acast 输出结果为vector/matrix/array,dcast 输出结果为data.frame。

参数:

data  要进行转换的数据框

formula  用于转换的公式

fun.aggregate   聚合函数,表达式为:行变量~列变量~三维变量~......,另外,.表示后面没有数据列,…表示之前或之后的所有数据列

margins  用于添加边界汇总数据

subset   用于添加过滤条件,需要载入plyr包

其他三个参数,用到的情况相对较少。


下面来看些具体的例子

先构建一个数据集

1

2

3

4

x<-data.frame(id=1:6,

              name=c("wang","zhang","li","chen","zhao","song"),

              shuxue=c(89,85,68,79,96,53),

              yuwen=c(77,68,86,87,92,63))<br>x



先使用melt函数对数据进行融化操作。

1

2

3

library(reshape2)<br>x1<-melt(x,id=c("id","name"))


x1

可以看到数据已经变成了长型数据(melt函数后面详细介绍)。

接下来就是对数据进行各种变型操作了。

1acast(x1,id~variable)

1dcast(x1,id~variable)

从以上两个执行结果来看,可以看出acast和dcast的区别

这里acast输出结果省略了id这个列,而dcast则输出id列

1acast(x1,id~name~variable)

三维的情况下acast输出的是一个数组,而dcast则报错,因为dcast输出结果为数据框。


1dcast(x1,id~variable,mean,margins=T)

可以看到,边缘多了两列汇总数据是对行列求平均的结果。

1dcast(x1,id~variable,mean,margins=c("id"))

只对列求平均值,当然也可以只对行求平均值,把id改成variable就可以了。

1

2

library(plyr)

dcast(x1,id~variable,mean,subset=.(id==1|id==3))

这里subset的筛选功能强大可以进行各种各样的筛选操作,类似filter的作用。

1dcast(x1,id+name~variable)

数据还原成原来的样子了。

1dcast(x1,variable~name)

对行列进行对调。

1acast(x1,variable~id+name)

到这里,我们已经着实体会了cast的强大,数据几乎可以转换成任何形式。

跟excel中的数据透视表功能类似。reshape2 数据操作 数据融合( cast) - molearner - 博客园

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容

  • R实战 :重塑数据(reshape2)[https://www.cnblogs.com/ljhdo/p/49543...
    ChrisJO阅读 4,835评论 0 1
  • 第一课:安装与基本操作 R的扩展包在R官网CRAN;另外,R官网还包含很多扩展资料,包括源代码,手册,FAQ,推荐...
    lizi_sjtu阅读 630评论 0 0
  • 我们用一个R内置的测试数据airquality举例什么是: head(airquality) ozone sol...
    知无牙阅读 505评论 0 0
  • 1. 安装导入reshape2 2. 认识长数据与宽数据 宽数据是我们常见的数据集格式,因为这种格式符合数据收集的...
    Nash_e381阅读 2,148评论 0 1
  • R语言与数据挖掘:公式;数据;方法 R语言特征 对大小写敏感 通常,数字,字母,. 和 _都是允许的(在一些国家还...
    __一蓑烟雨__阅读 1,613评论 0 5