pypy on PySpark

什么是pypy

简单的说,pypy 基于jit静态编译,相比cpython 动态解释执行,因此执行速度上会更高效,同时减少了内存使用。

http://pypy.org

对三方包的支持一直是pypy的软肋,特别是一些科学计算包,不过在最新的 pypy5.9 中终于对Pandas和NumPy提供了支持。

一个简单的例子:
test1:

import time
t = time.time()
i = 0
for i in xrange(10**8):
    continue
print time.time() - t

test2:

import time
t = time.time()
i = 0
for i in xrange(10**8):
    i = i + 1
print time.time() - t
case pypy Cpython
test1 0.25s 4.3s
test2 0.25s 10s

tips:

不难发现,在 pure python 的测试中,一些场景会有几十倍的性能提升。

不过在Pandas和NumPy的性能测试中,发现pypy会比Cpython慢4x-5x。

可以使用Numpypy替代NumPy,性能又能得到提升:
原因参考:https://morepypy.blogspot.com/2017/10/how-to-make-your-code-80-times-faster.html

PySpark

PySpark

在python driver端,SparkContext利用Py4J启动一个JVM并产生一个JavaSparkContext

RDD在python下的转换会被映射成java环境下PythonRDD。在远端worker机器上,PythonRDD对象启动一些子进程并通过pipes与这些子进程通信。

使用 pypy 则是将与SparkWorker通信的Cpython进程替换成pypy进程。

pypy on PySpark

可以在 Spark-env.sh 中设置 export PYSPARK_PYTHON =/path/to/pypy 或者提交程序时指定--conf spark.pyspark.python=/path/to/pypy等方式进行提交。

加载python执行环境的代码

测试代码:

//filter
rdd.filter(lambda x:x['addr'] != 'beijing')

//map
import re
def simpleMobileVerify(phone):
    p2 = re.compile('^0\d{2,3}\d{7,8}$|^1[358]\d{9}$|^147\d{8}')
    phonematch = p2.match(phone)
    if(phone):
        return phone
    else:
        return None
rdd.map(lambda x:simpleMobileVerify(x['accountMobile'])).filter(lambda x : x != None)
case pypy Cpython
filter 60s 67s
map 11s 22s

在filter这种IO密集型的任务中提升不大,在计算密集型的任务中提升较为明显,提升比例与计算复杂度成正相关。

下图为一个计算指标任务的执行时间,其中红框部分使用pypy调度:

执行耗时

结论:

在真实的pySpark任务中,根据不同类型的任务提升幅度不同,可以根据不同的业务场景以及使用的三方包,使用Cpython和pypy。

其他的性能对比可以参考:
http://emptypipes.org/2015/01/17/python-vs-scala-vs-spark/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,809评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,189评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,290评论 0 359
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,399评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,425评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,116评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,710评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,629评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,155评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,261评论 3 339
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,399评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,068评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,758评论 3 332
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,252评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,381评论 1 271
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,747评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,402评论 2 358

推荐阅读更多精彩内容