单细胞/空间组利用scanpy实现Seurat的splitby分页绘图

在使用Seurat时,经常需要对不同分类的样本在同一画布上进行可视化,可以非常方便地通过其DimPlot()函数的goupyby和spliby等参数实现,例如对照组和实验组,如下:

以正常和肿瘤组织作为区别

但是在python的环境中,scanpy的sc.pl.umap()并没有这么灵活的参数。所以需要通过循环解决问题,sc.pl.umap()中的color参数类似于Seurat的groupby,但其groups参数完全没有Seurat的splitby强大。所以我们可以通过python的Matplotlib包的plt.subplots()函数,结合循环将分组内容一一绘制,再多个分组图合并在一起,就实现相同目的。

下面提供一个参考:

#data.obsm['umap']=data.obsm['spatial']
#data.obs.refined_pred=data.obs.refined_pred.astype('str') # 数字转为字符串
celltype=data.obs['refined_pred'].unique().tolist() # refined_pred是细胞注释
fig, axes = plt.subplots(4, 5, figsize=(18, 12), tight_layout=True,dpi=600) # nrows和ncols取决于想要的画图个数
x=0;y=0
for i in celltype: #celltype为任何需要并列绘制的list
    fig = sc.pl.umap(data, color='refined_pred', groups=i, ax=axes[y][x],show=False)
    x = x +1 if x <4 else 0
    y = y +1 if y <3 and x ==0 else y
plt.show()
#plt.savefig('./split.png')
按细胞类型分页绘图

以上这个例子是用于空间组分图绘制不同细胞类型分布的图谱,对应普通的单细胞数据,例如实验组 vs 对照组、scRNA数据 vs scATAC数据也是一样的(循环+共同绘制)。而且值得注意的是,空间组之所以不采用官方推荐的scanpy.pl.spatial()函数,是因为这个函数对于纯粹的scanpy数据可以很好的适配,但是对于其他空间组工具包,例如spateo、spGCN等等,就不适配,还是原始的sc.pl.umap()更香,具有更加广的应用面和适配性,不过注意调整adata.obsm['umap']=adata.obsm['spatial']就可。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容