C++系列之高级教程(二)

C++系列之高级教程(二)

[toc]

C++预处理器

预处理器是一些指令,指示编译器在实际编译之前所需完成的预处理。

所有的预处理器指令都是以井号(#)开头,只有空格字符可以出现在预处理指令之前。预处理指令不是 C++ 语句,所以它们不会以分号(;)结尾。

我们已经看到,之前所有的实例中都有 #include 指令。这个宏用于把头文件包含到源文件中。

C++ 还支持很多预处理指令,比如 #include、#define、#if、#else、#line 等,让我们一起看看这些重要指令。

#define预处理

#define 预处理指令用于创建符号常量。该符号常量通常称为,指令的一般形式是:

#define macro-name replacement-text

当这一行代码出现在一个文件中时,在该文件中后续出现的所有宏都将会在程序编译之前被替换为 replacement-text。例如:

#include <iostream>
using namespace std;
 
#define PI 3.14159
 
int main ()
{
 
    cout << "Value of PI :" << PI << endl; 
 
    return 0;
}

现在,让我们测试这段代码,看看预处理的结果。假设源代码文件已经存在,接下来使用 -E 选项进行编译,并把结果重定向到 test.p。现在,如果您查看 test.p 文件,将会看到它已经包含大量的信息,而且在文件底部的值被改为如下

$ gcc -E test.cpp > test.p

...
int main ()
{
 
    cout << "Value of PI :" << 3.14159 << endl; 

    return 0;
}

参数宏

您可以使用 #define 来定义一个带有参数的宏,如下所示:

#include <iostream>
using namespace std;
 
#define MIN(a,b) (a<b ? a : b)
 
int main ()
{
   int i, j;
   i = 100;
   j = 30;
   cout <<"较小的值为:" << MIN(i, j) << endl;
 
    return 0;
}
代码运行结果:
较小的值为:30

条件编译

有几个指令可以用来有选择地对部分程序源代码进行编译。这个过程被称为条件编译。

条件预处理器的结构与 if 选择结构很像。请看下面这段预处理器的代码:

#ifdef NULL
   #define NULL 0
#endif

您可以只在调试时进行编译,调试开关可以使用一个宏来实现,如下所示:

#ifdef DEBUG
   cerr <<"Variable x = " << x << endl;
#endif

如果在指令 #ifdef DEBUG 之前已经定义了符号常量 DEBUG,则会对程序中的 cerr 语句进行编译。您可以使用 #if 0 语句注释掉程序的一部分,如下所示:

#if 0
   不进行编译的代码
#endif

来看看以下实例:

#include <iostream>
using namespace std;
#define DEBUG
 
#define MIN(a,b) (((a)<(b)) ? a : b)
 
int main ()
{
   int i, j;
   i = 100;
   j = 30;
#ifdef DEBUG
   cerr <<"Trace: Inside main function" << endl;
#endif
 
#if 0
   /* 这是注释部分 */
   cout << MKSTR(HELLO C++) << endl;
#endif
 
   cout <<"The minimum is " << MIN(i, j) << endl;
 
#ifdef DEBUG
   cerr <<"Trace: Coming out of main function" << endl;
#endif
    return 0;
}
代码运行结果:
Trace: Inside main function
The minimum is 30
Trace: Coming out of main function

#和##运算符

# 和 ## 预处理运算符在 C++ 和 ANSI/ISO C 中都是可用的。# 运算符会把 replacement-text 令牌转换为用引号引起来的字符串。

请看下面的宏定义:

#include <iostream>
using namespace std;
 
#define MKSTR( x ) #x
 
int main ()
{
    cout << MKSTR(HELLO C++) << endl;
 
    return 0;
}
代码运行结果:
HELLO C++

让我们来看看它是如何工作的。不难理解,C++ 预处理器把下面这行:

cout << MKSTR(HELLO C++) << endl;

转换成了:

cout << "HELLO C++" << endl;

## 运算符用于连接两个令牌。下面是一个实例:

#define CONCAT( x, y )  x ## y

当 CONCAT 出现在程序中时,它的参数会被连接起来,并用来取代宏。例如,程序中 CONCAT(HELLO, C++) 会被替换为 "HELLO C++",如下面实例所示。

#include <iostream>
using namespace std;
 
#define concat(a, b) a ## b
int main()
{
   int xy = 100;
   
   cout << concat(x, y);
   return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
    100

让我们来看看它是如何工作的。不难理解,C++ 预处理器把下面这行:

cout << concat(x, y);

转换成了:

cout << xy;

C++中的预定义宏

C++ 提供了下表所示的一些预定义宏:

描述
LINE 这会在程序编译时包含当前行号。
FILE 这会在程序编译时包含当前文件名。
DATE 这会包含一个形式为 month/day/year 的字符串,它表示把源文件转换为目标代码的日期。
TIME 这会包含一个形式为 hour:minute:second 的字符串,它表示程序被编译的时间。

让我们看看上述这些宏的实例:

#include <iostream>
using namespace std;
 
int main ()
{
    cout << "Value of __LINE__ : " << __LINE__ << endl;
    cout << "Value of __FILE__ : " << __FILE__ << endl;
    cout << "Value of __DATE__ : " << __DATE__ << endl;
    cout << "Value of __TIME__ : " << __TIME__ << endl;
 
    return 0;
}
当上面的代码被编译和执行时,它会产生下列结果:
Value of __LINE__ : 6
Value of __FILE__ : test.cpp
Value of __DATE__ : Feb 28 2011
Value of __TIME__ : 18:52:48

C++信号处理

信号是由操作系统传给进程的中断,会提早终止一个程序。在 UNIX、LINUX、Mac OS X 或 Windows 系统上,可以通过按 Ctrl+C 产生中断。

有些信号不能被程序捕获,但是下表所列信号可以在程序中捕获,并可以基于信号采取适当的动作。这些信号是定义在 C++ 头文件 <csignal> 中。

信号 描述
SIGABRT 程序的异常终止,如调用 abort
SIGFPE 错误的算术运算,比如除以零或导致溢出的操作。
SIGILL 检测非法指令。
SIGINT 程序终止(interrupt)信号。
SIGSEGV 非法访问内存。
SIGTERM 发送到程序的终止请求。

signal()函数

C++ 信号处理库提供了 signal 函数,用来捕获突发事件。以下是 signal() 函数的语法:

void (*signal (int sig, void (*func)(int)))(int);

这个看起来有点费劲,以下语法格式更容易理解:

signal(registered signal, signal handler)

这个函数接收两个参数:第一个参数是一个整数,代表了信号的编号;第二个参数是一个指向信号处理函数的指针。

让我们编写一个简单的 C++ 程序,使用 signal() 函数捕获 SIGINT 信号。不管您想在程序中捕获什么信号,您都必须使用 signal 函数来注册信号,并将其与信号处理程序相关联。看看下面的实例:

#include <iostream>
#include <csignal>
#include <unistd.h>
 
using namespace std;
 
void signalHandler( int signum )
{
    cout << "Interrupt signal (" << signum << ") received.\n";
 
    // 清理并关闭
    // 终止程序  
 
   exit(signum);  
 
}
 
int main ()
{
    // 注册信号 SIGINT 和信号处理程序
    signal(SIGINT, signalHandler);  
 
    while(1){
       cout << "Going to sleep...." << endl;
       sleep(1);
    }
 
    return 0;
}
代码运行结果:
Going to sleep....
Going to sleep....
Going to sleep....
    

现在,按 Ctrl+C 来中断程序,您会看到程序捕获信号,程序打印如下内容并退出:

Going to sleep....
Going to sleep....
Going to sleep....
Interrupt signal (2) received.

raise()函数

您可以使用函数 raise() 生成信号,该函数带有一个整数信号编号作为参数,语法如下:

int raise (signal sig);

在这里,sig 是要发送的信号的编号,这些信号包括:SIGINT、SIGABRT、SIGFPE、SIGILL、SIGSEGV、SIGTERM、SIGHUP。以下是我们使用 raise() 函数内部生成信号的实例:

#include <iostream>
#include <csignal>
#include <unistd.h>
 
using namespace std;
 
void signalHandler( int signum )
{
    cout << "Interrupt signal (" << signum << ") received.\n";
 
    // 清理并关闭
    // 终止程序 
 
   exit(signum);  
 
}
 
int main ()
{
    int i = 0;
    // 注册信号 SIGINT 和信号处理程序
    signal(SIGINT, signalHandler);  
 
    while(++i){
       cout << "Going to sleep...." << endl;
       if( i == 3 ){
          raise( SIGINT);
       }
       sleep(1);
    }
 
    return 0;
}
代码运行结果:
Going to sleep....
Going to sleep....
Going to sleep....
Interrupt signal (2) received.

C++多线程

多线程是多任务处理的一种特殊形式,多任务处理允许让电脑同时运行两个或两个以上的程序。一般情况下,两种类型的多任务处理:基于进程和基于线程

  • 基于进程的多任务处理是程序的并发执行。
  • 基于线程的多任务处理是同一程序的片段的并发执行。

多线程程序包含可以同时运行的两个或多个部分。这样的程序中的每个部分称为一个线程,每个线程定义了一个单独的执行路径。

本教程假设您使用的是 Linux 操作系统,我们要使用 POSIX 编写多线程 C++ 程序。POSIX Threads 或 Pthreads 提供的 API 可在多种类 Unix POSIX 系统上可用,比如 FreeBSD、NetBSD、GNU/Linux、Mac OS X 和 Solaris。

创建线程

下面的程序,我们可以用它来创建一个 POSIX 线程:

#include <pthread.h>
pthread_create (thread, attr, start_routine, arg) 

在这里,pthread_create 创建一个新的线程,并让它可执行。下面是关于参数的说明:

参数 描述
thread 指向线程标识符指针。
attr 一个不透明的属性对象,可以被用来设置线程属性。您可以指定线程属性对象,也可以使用默认值 NULL。
start_routine 线程运行函数起始地址,一旦线程被创建就会执行。
arg 运行函数的参数。它必须通过把引用作为指针强制转换为 void 类型进行传递。如果没有传递参数,则使用 NULL。

创建线程成功时,函数返回0,若返回值不为0则说明创建线程失败。

终止线程

使用下面的程序,我们可以用它来终止一个 POSIX 线程:

#include <pthread.h>
pthread_exit (status) 

在这里,pthread_exit 用于显式地退出一个线程。通常情况下,pthread_exit() 函数是在线程完成工作后无需继续存在时被调用。

如果 main() 是在它所创建的线程之前结束,并通过 pthread_exit() 退出,那么其他线程将继续执行。否则,它们将在 main() 结束时自动被终止。

实例

以下简单的实例代码使用 pthread_create() 函数创建了 5 个线程,每个线程输出"Hello Runoob!":

#include <iostream>
// 必须的头文件
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS 5
 
// 线程的运行函数
void* say_hello(void* args)
{
    cout << "Hello Runoob!" << endl;
    return 0;
}
 
int main()
{
    // 定义线程的 id 变量,多个变量使用数组
    pthread_t tids[NUM_THREADS];
    for(int i = 0; i < NUM_THREADS; ++i)
    {
        //参数依次是:创建的线程id,线程参数,调用的函数,传入的函数参数
        int ret = pthread_create(&tids[i], NULL, say_hello, NULL);
        if (ret != 0)
        {
           cout << "pthread_create error: error_code=" << ret << endl;
        }
    }
    //等各个线程退出后,进程才结束,否则进程强制结束了,线程可能还没反应过来;
    pthread_exit(NULL);
}

使用 -lpthread 库编译下面的程序:

$ g++ test.cpp -lpthread -o test.o

现在,执行程序,将产生下列结果:

$ ./test.o
Hello Runoob!
Hello Runoob!
Hello Runoob!
Hello Runoob!
Hello Runoob!

以下简单的实例代码使用 pthread_create() 函数创建了 5 个线程,并接收传入的参数。每个线程打印一个 "Hello Runoob!" 消息,并输出接收的参数,然后调用 pthread_exit() 终止线程。

//文件名:test.cpp
 
#include <iostream>
#include <cstdlib>
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS     5
 
void *PrintHello(void *threadid)
{  
   // 对传入的参数进行强制类型转换,由无类型指针变为整形数指针,然后再读取
   int tid = *((int*)threadid);
   cout << "Hello Runoob! 线程 ID, " << tid << endl;
   pthread_exit(NULL);
}
 
int main ()
{
   pthread_t threads[NUM_THREADS];
   int indexes[NUM_THREADS];// 用数组来保存i的值
   int rc;
   int i;
   for( i=0; i < NUM_THREADS; i++ ){      
      cout << "main() : 创建线程, " << i << endl;
      indexes[i] = i; //先保存i的值
      // 传入的时候必须强制转换为void* 类型,即无类型指针        
      rc = pthread_create(&threads[i], NULL, 
                          PrintHello, (void *)&(indexes[i]));
      if (rc){
         cout << "Error:无法创建线程," << rc << endl;
         exit(-1);
      }
   }
   pthread_exit(NULL);
}

现在编译并执行程序,将产生下列结果:

$ g++ test.cpp -lpthread -o test.o
$ ./test.o
main() : 创建线程, 0
main() : 创建线程, 1
Hello Runoob! 线程 ID, 0
main() : 创建线程, Hello Runoob! 线程 ID, 21

main() : 创建线程, 3
Hello Runoob! 线程 ID, 2
main() : 创建线程, 4
Hello Runoob! 线程 ID, 3
Hello Runoob! 线程 ID, 4

向线程传递参数(线程间通信)

这个实例演示了如何通过结构传递多个参数。您可以在线程回调中传递任意的数据类型,因为它指向 void,如下面的实例所示:

#include <iostream>
#include <cstdlib>
#include <pthread.h>
 
using namespace std;
 
#define NUM_THREADS     5
 
struct thread_data{
   int  thread_id;
   char *message;
};
 
void *PrintHello(void *threadarg)
{
   struct thread_data *my_data;
 
   my_data = (struct thread_data *) threadarg;
 
   cout << "Thread ID : " << my_data->thread_id ;
   cout << " Message : " << my_data->message << endl;
 
   pthread_exit(NULL);
}
 
int main ()
{
   pthread_t threads[NUM_THREADS];
   struct thread_data td[NUM_THREADS];
   int rc;
   int i;
 
   for( i=0; i < NUM_THREADS; i++ ){
      cout <<"main() : creating thread, " << i << endl;
      td[i].thread_id = i;
      td[i].message = (char*)"This is message";
      rc = pthread_create(&threads[i], NULL,
                          PrintHello, (void *)&td[i]);
      if (rc){
         cout << "Error:unable to create thread," << rc << endl;
         exit(-1);
      }
   }
   pthread_exit(NULL);
}

当上面的代码被编译和执行时,它会产生下列结果:

$ g++ -Wno-write-strings test.cpp -lpthread -o test.o
$ ./test.o
main() : creating thread, 0
main() : creating thread, 1
Thread ID : 0 Message : This is message
main() : creating thread, Thread ID : 21
 Message : This is message
main() : creating thread, 3
Thread ID : 2 Message : This is message
main() : creating thread, 4
Thread ID : 3 Message : This is message
Thread ID : 4 Message : This is message

连接和分离线程

我们可以使用以下两个函数来连接或分离线程:

pthread_join (threadid, status)
pthread_detach (threadid)

pthread_join() 子程序阻碍调用程序,直到指定的 threadid 线程终止为止。当创建一个线程时,它的某个属性会定义它是否是可连接的(joinable)或可分离的(detached)。只有创建时定义为可连接的线程才可以被连接。如果线程创建时被定义为可分离的,则它永远也不能被连接。

这个实例演示了如何使用 pthread_join() 函数来等待线程的完成

#include <iostream>
#include <cstdlib>
#include <pthread.h>
#include <unistd.h>
 
using namespace std;
 
#define NUM_THREADS     5
 
void *wait(void *t)
{
   int i;
   long tid;
 
   tid = (long)t;
 
   sleep(1);
   cout << "Sleeping in thread " << endl;
   cout << "Thread with id : " << tid << "  ...exiting " << endl;
   pthread_exit(NULL);
}
 
int main ()
{
   int rc;
   int i;
   pthread_t threads[NUM_THREADS];
   pthread_attr_t attr;
   void *status;
 
   // 初始化并设置线程为可连接的(joinable)
   pthread_attr_init(&attr);
   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 
   for( i=0; i < NUM_THREADS; i++ ){
      cout << "main() : creating thread, " << i << endl;
      rc = pthread_create(&threads[i], NULL, wait, (void *)&i );
      if (rc){
         cout << "Error:unable to create thread," << rc << endl;
         exit(-1);
      }
   }
 
   // 删除属性,并等待其他线程
   pthread_attr_destroy(&attr);
   for( i=0; i < NUM_THREADS; i++ ){
      rc = pthread_join(threads[i], &status);
      if (rc){
         cout << "Error:unable to join," << rc << endl;
         exit(-1);
      }
      cout << "Main: completed thread id :" << i ;
      cout << "  exiting with status :" << status << endl;
   }
 
   cout << "Main: program exiting." << endl;
   pthread_exit(NULL);
}
当上面的代码被编译和执行时,它会产生下列结果:
main() : creating thread, 0
main() : creating thread, 1
main() : creating thread, 2
main() : creating thread, 3
main() : creating thread, 4
Sleeping in thread 
Thread with id : 4  ...exiting 
Sleeping in thread 
Thread with id : 3  ...exiting 
Sleeping in thread 
Thread with id : 2  ...exiting 
Sleeping in thread 
Thread with id : 1  ...exiting 
Sleeping in thread 
Thread with id : 0  ...exiting 
Main: completed thread id :0  exiting with status :0
Main: completed thread id :1  exiting with status :0
Main: completed thread id :2  exiting with status :0
Main: completed thread id :3  exiting with status :0
Main: completed thread id :4  exiting with status :0
Main: program exiting.

std::thread

C++ 11 之后添加了新的标准线程库 std::threadstd::thread 在 <thread> 头文件中声明,因此使用 std::thread 时需要包含 在 <thread> 头文件。

之前一些编译器使用 C++ 11 的编译参数是 -std=c++11:

g++ -std=c++11 test.cpp

std::thread 默认构造函数,创建一个空的 std::thread 执行对象。

#include<thread>
std::thread thread_object(callable)

一个可调用对象可以是以下三个中的任何一个:

  • 函数指针
  • 函数对象
  • lambda 表达式

定义 callable 后,将其传递给 std::thread 构造函数 thread_object

// 演示多线程的CPP程序
// 使用三个不同的可调用对象
#include <iostream>
#include <thread>
using namespace std;
 
// 一个虚拟函数
void foo(int Z)
{
    for (int i = 0; i < Z; i++) {
        cout << "线程使用函数指针作为可调用参数\n";
    }
}
 
// 可调用对象
class thread_obj {
public:
    void operator()(int x)
    {
        for (int i = 0; i < x; i++)
            cout << "线程使用函数对象作为可调用参数\n";
    }
};
 
int main()
{
    cout << "线程 1 、2 、3 "
         "独立运行" << endl;
 
    // 函数指针
    thread th1(foo, 3);
 
    // 函数对象
    thread th2(thread_obj(), 3);
 
    // 定义 Lambda 表达式
    auto f = [](int x) {
        for (int i = 0; i < x; i++)
            cout << "线程使用 lambda 表达式作为可调用参数\n";
    };
 
    // 线程通过使用 lambda 表达式作为可调用的参数
    thread th3(f, 3);
 
    // 等待线程完成
    // 等待线程 t1 完成
    th1.join();
 
    // 等待线程 t2 完成
    th2.join();
 
    // 等待线程 t3 完成
    th3.join();
 
    return 0;
}

使用 C++ 11 的编译参数 -std=c++11:

g++ -std=c++11 test.cpp

当上面的代码被编译和执行时,它会产生下列结果:

线程 1 、2 、3 独立运行
线程使用函数指针作为可调用参数
线程使用函数指针作为可调用参数
线程使用函数指针作为可调用参数
线程使用函数对象作为可调用参数
线程使用函数对象作为可调用参数
线程使用函数对象作为可调用参数
线程使用 lambda 表达式作为可调用参数
线程使用 lambda 表达式作为可调用参数
线程使用 lambda 表达式作为可调用参数

C++ Web编程

什么是CGI?

  • 公共网关接口(CGI),是一套标准,定义了信息是如何在 Web 服务器和客户端脚本之间进行交换的。
  • CGI 规范目前是由 NCSA 维护的,NCSA 定义 CGI 如下:
  • 公共网关接口(CGI),是一种用于外部网关程序与信息服务器(如 HTTP 服务器)对接的接口标准。
  • 目前的版本是 CGI/1.1,CGI/1.2 版本正在推进中。

Web 浏览

为了更好地了解 CGI 的概念,让我们点击一个超链接,浏览一个特定的网页或 URL,看看会发生什么。

  • 您的浏览器联系上 HTTP Web 服务器,并请求 URL,即文件名。
  • Web 服务器将解析 URL,并查找文件名。如果找到请求的文件,Web 服务器会把文件发送回浏览器,否则发送一条错误消息,表明您请求了一个错误的文件。
  • Web 浏览器从 Web 服务器获取响应,并根据接收到的响应来显示文件或错误消息。

然而,以这种方式搭建起来的 HTTP 服务器,不管何时请求目录中的某个文件,HTTP 服务器发送回来的不是该文件,而是以程序形式执行,并把执行产生的输出发送回浏览器显示出来。

公共网关接口(CGI),是使得应用程序(称为 CGI 程序或 CGI 脚本)能够与 Web 服务器以及客户端进行交互的标准协议。这些 CGI 程序可以用 Python、PERL、Shell、C 或 C++ 等进行编写。

CGI 架构图

CGI 架构

Web 服务器配置

在您进行 CGI 编程之前,请确保您的 Web 服务器支持 CGI,并已配置成可以处理 CGI 程序。所有由 HTTP 服务器执行的 CGI 程序,都必须在预配置的目录中。该目录称为 CGI 目录,按照惯例命名为 /var/www/cgi-bin。虽然 CGI 文件是 C++ 可执行文件,但是按照惯例它的扩展名是 .cgi

默认情况下,Apache Web 服务器会配置在 /var/www/cgi-bin 中运行 CGI 程序。如果您想指定其他目录来运行 CGI 脚本,您可以在 httpd.conf 文件中修改以下部分:

<Directory "/var/www/cgi-bin">
   AllowOverride None
   Options ExecCGI
   Order allow,deny
   Allow from all
</Directory>
 
<Directory "/var/www/cgi-bin">
Options All
</Directory>
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,923评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,154评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,775评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,960评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,976评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,972评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,893评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,709评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,159评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,400评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,552评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,265评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,876评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,528评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,701评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,552评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,451评论 2 352

推荐阅读更多精彩内容