2020-08-16 几个经典CNN结构及其原理

LeNet:最早用于数字识别的CNN

image

C1层是一个卷积层

6个特征图,每个特征图中的每个神经元与输入中55的邻域相连,特征图大小为2828

每个卷积神经元的参数数目:5*5=25个weight参数和一个bias参数

链接数目:(55+1)6(2828)=122304个链接

参数共享:每个特征图内共享参数,因此参数总数:共(551)*6=156个参数

S2层是一个下采样层

6个1414的特征图,每个图中的每个单元与C1特征图中的一个22邻域相连接,不重叠。

和max pooling和average pooling不一样,在S2层中每个单元的4个输入相加,乘以一个可训练参数w,再加上一个可训练偏置b,结果通过sigmoid函数计算得到最终池化之后的值。

连接数:(22+1)11414*6=5880个

参数共享:每个特征图内共享参数,因此有2*6=12个可训练参数

C3层是一个卷积层

16个卷积核,得到16张特征图,特征图大小为10*10

每个特征图中的每个神经元与S2中某几层的多个5*5的邻域相连;

例如:对于C3层第0张特征图,其每一个节点与S2层的第0~2张特征图,总共3个5*5个节点相连接。

S4层是一个下采样层(和S2一样)

由16个55大小的特征图构成,特征图中的每个单元与C3中相应特征图的22邻域相连接。

连接数:(22+1)5516=2000个

参数共享:特征图内共享参数,每个特征图中的每个神经元需要1个因子和一个偏置,因此有2*16个可训练参数。

C5层是一个卷积层

120个神经元,可以看作120个特征图,每张特征图的大小为1*1

每个单元与S4层的全部16个单元的5*5邻域相连(S4和C5之间的全连接)

连接数=可训练参数:(5516+1)*120=48120个

F6层是一个全连接层

有84个单元,与C5层全连接。

F6层计算输入向量和权重向量之间的点积,再加上一个偏置(wx+b),最后将加权值做一个sigmoid转换。

连接数=可训练参数:(120+1)*84=10164

这里选择84作为神经元的数目从论文中可以认为是:ASCII字符标准的打印字符,是用712大小的位图,这里希望每一维特征分别体现标准712大小位图上每一个像素点的特性。

F7层是一个输出层

输出层是由欧式径向基函数(RBF)组成。每一个输出对应一个RBF函数,每一个RBF函数都有84维的输入向量,RBF的函数公式如下。每一个RBF函数都会有一个输出,最后输出层会输出一个10维的向量。

AlexNet:2012年ILSVRC比赛冠军,远超第二名的CNN,比LeNet更深,用多层小卷积叠加来替换单个的大卷积

image

**AlexNet结构优化 **

非线性激活函数:ReLU

使用Max Pooling,并且提出池化核和步长,使池化核之间存在重叠,提升了特征的丰富性。 防止过拟合的方法:Dropout,Data augmentation(数据增强)

大数据训练:百万级ImageNet图像数据

GPU实现:在每个GPU中放置一半核(或神经元),还有一个额外的技巧:GPU间的通讯只在某些层进行。 LRN归一化:对局部神经元的活动创建了竞争机制,使得其中响应比较大的值变得相对更大,并抑制其它反馈较小的神经元,增强了模型的泛化能力。本质上,LRN是仿造生物学上活跃的神经元对于相邻神经元的抑制现象(侧抑制)

ZF Net:2013ILSVRC冠军

image

​基于AlexNet进行微调

修改窗口大小和步长

使用稠密单GPU的网络结构替换AlexNet的稀疏双GPU结构

Top5错误率11.2%

使用ReLU激活函数和交叉熵损失函数

GoogleNet:2014ILSVRC冠军

image

Top5错误率6.7%;使用9个inception模块,改变CNN原串行结构,并行,共22层;使用平均池化替代FC层;参数量仅为AlexNet的1/12;使用softmax获取平均结果;网络结构的更新,性能比AlexNet要好;2014年ILSVRC冠军

Inception-v1

image

橙色框是 stem(左边的方框),包含一些初始卷积。紫色框是辅助分类器。较宽的部分是 inception 模块

由于网络较深,为了阻止该网络中间部分梯度的「消失」问题,V1引入了两个辅助分类器(上图紫色框)。它们对其中两个 Inception 模块的输出执行 softmax 操作,然后在同样的标签上计算辅助损失。总损失即辅助损失和真实损失的加权和。该论文中对每个辅助损失使用的权重值是 0.3。

辅助loss只用于训练,不用于推理。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352