Python数据分析-FIFA2018球员

简书展示jupyter notebook的分布输出结果有问题,需要看分步结果的可以到我的CSND博客
https://blog.csdn.net/Itachi_dream

#!/usr/bin/env python
# coding: utf-8
# TI=FIFA2018球员数据分析
# 明确分析目的
#   运动员数量前十名的国家,以及平均身价
#   各大联赛运动员数量,以及球员平均身价
#   各俱乐部的平均周薪
#   英超联赛English Premier League各个俱乐部球员的平均周薪
#   球员年龄分布情况,不同年龄段平均身价分布
# 引入使用的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据文件
df = pd.read_csv('./FIFA_2018_player.csv')
# 查看数据具有哪些列,什么类型
df.info()
# 可见共17994行,league和club有缺失值
df.head()
df.describe()
df.count()
# 可见league 和 club有缺失值
# 对于本次的分析目的,其实在加载数据时就可以只加载部分列
# 选出部分列 ID nationality league club age eur_value eur_wage
# 分析的是FIFA2018的数据,age按当年数据计算,birth_date省略
df = df[['ID', 'nationality', 'league', 'club', 'age', 'eur_value', 'eur_wage']]
df
df[df.league.isnull()]
# 可以看到联赛、俱乐部是空值,同时这些条目的身价、周薪都是0
# 删除数据一般在后面进行,但四行数据都异常可以先删除
df.drop(df[df.league.isnull()].index,inplace=True)
# 查看删除后情况
df.count()
# 查看数据中数值、浮点型数据整体信息
df.describe()
# 经查看,eur_value 在最小值上有问题,0.000000e+00
# 筛选一下数据,查看eur_value == 0.000000e+00的有多少
df[df['eur_value'] == 0.000000e+00].count()
# eur_value == 0.000000e+00的有6条
df[df['eur_value'] == 0.000000e+00]
# 使用平均值填充这些身价为0的数据
# df[df['eur_value'] == 0.000000e+00].loc[:,'eur_value'] = 2.404317e+06 警告
# 使用平均值填充这些身价为0的数据
df['eur_value'].replace(0, df['eur_value'].mean(), inplace = True)
df.describe()
# 可见数据已经填充成功
# 检查是否有整个条目完全重复值,若有则展示
df[df.duplicated()]
# 检查指定列是否有重复值
df[df['ID'].duplicated()]
# 查看分类统计值是否有不合逻辑的类名
df['league'].value_counts()
# 数据清洗完毕,开始分析
# 样本总数
df.count()
# 数值类型列统计学指标
df.describe()
# 运动员数量前十名的国家
nationality_data = df.groupby('nationality', as_index = False)  #拿出按国家分组的数据
nat_count = nationality_data.count()[['nationality','ID']]     #计数,拿出国家和ID两列
nat_count.rename(columns = {'ID':'ath_count'}, inplace = True) #对列名重命名
nat_head10 = nat_count.sort_values('ath_count', ascending = False).head(10)#降序排序,取前十
nat_head10
# 运动员数量前十名的国家及其平均球员身价
nat_val_mean = nationality_data[['nationality','eur_value']].mean()
nat_val_mean.rename(columns = {'eur_value':'val_mean'})
nat_head10_val_mean = pd.merge(nat_head10,nat_val_mean, on = 'nationality', how = 'left')
nat_head10_val_mean
# 各大联赛运动员数量,以及球员平均身价(操作方式与上述方法类似)
league_data = df.groupby('league', as_index = False)
league_count = league_data.count()[['league','ID']].rename(columns = {'ID':'ath_count'})
league_count.rename(columns = {'ID':'ath_count'}).sort_values('ath_count', ascending = False)
lea_val_mean = league_data[['league','eur_value']].mean().rename(columns = {'eur_value':'val_mean'})
lea_val_mean = pd.merge(league_count, lea_val_mean, on = 'league', how = 'left')
lea_val_mean
# 各俱乐部的平均周薪
club_data = df.groupby('club', as_index = False)
club_wage_mean = club_data.mean()[['club','eur_wage']]
club_wage_mean.rename(columns = {'eur_wage':'wage_mean'},inplace = True)
club_wage_mean.sort_values('wage_mean', ascending = False, inplace = True)
club_wage_mean
# 英超联赛English Premier League
EPL_data = df[df['league'] == 'English Premier League']
EPL_data.describe()
# 英超联赛English Premier League各个俱乐部球员的平均周薪
EPL_club = EPL_data.groupby('club', as_index = False)
EPL_club_wage_mean = EPL_club.mean()[['club','eur_wage']]
EPL_club_wage_mean.rename(columns = {'eur_wage':'wage_mean'}, inplace = True)
EPL_club_wage_mean.sort_values('wage_mean', ascending = False, inplace = True)
EPL_club_wage_mean
# 球员年龄分布情况,不同年龄段平均身价分布
# ⽣成桶,5岁⼀个分桶,根据上述统计数据可知最⼩16岁,最⼤47
bins = np.arange(15, 50, 5)
bins_data = pd.cut(df['age'], bins)
bin_counts = df['age'].groupby(bins_data).count()
print(bin_counts)
# 可以使用matplotlib粗看一下作图效果,以便在正式出图前作调整
bin_counts.plot(kind='pie')
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容