ReentrantLock 源码分析

说明 CAS操作

比较并交换
CAS3个操作数,内存值V,旧的预期值A,要修改的更新值B。当且仅当预期值A与内存值V相同时,将内存值V修改为B,否则什么都不做。

重入锁 ReentrantLock

public class ReentrantLock implements Lock,Serializabke{

       private final ReentrantLock.Sync sync

       //无参构造函数  使用的非公平的锁 

       public ReentrantLock(){

               this.sync = new ReentrantLock.NonFairSync();

        }

  //true 公平锁(先进来的线程先执行),否则非公平锁(后近来的线程也可能先执行)

        public ReentranLock(boolean var1){

                this.sync = (ReentrantLock.Sync)(var1 ? new ReentrantLock.FairSync : new ReentrantLock.NonfairSync);

       }

      //获得锁

     public void lock(){

               this.sync.lock();

        }

  //获得锁,优先响应中断,无法获取锁会被中断

       public void lockInterruptibly() throws InterruptedException{

                this.sync.acquireInterruptiby(1);

       }

   //尝试获得锁,该方法不等待,成功返回true  失败返回false

       public boolean tryLock(){

              return this.sync.nonfairTryAcquire(1);

       }

   //在给定的时间内尝试获得锁

       public boolean tryLock(long var1 , TimeUnit var2) throws InterruptedException{

               return this.sync.tryAcquireNanos(1,var2.toBanos(v1));

       }

  //释放锁

      public void unlock(){

               this.sync.release(1);

       }

       public Condition newCondition(){

               return this.sync.newCondition();

       }

 static final class FairSync extends ReentrantLock.Sync{}

 static final class NonfairSync extends ReentrantLock.Sync{

    //尝试获取锁     

   final void lock(){

         //先基于cas将state(锁数量)重0设置1, 成功,设置当前线程为独占线程;请求成功则插队

     //失败,即尝试的过程中,被其它线程先一步占有锁

     if([this.compareAndSetState(0](http://this.compareandsetstate(0/),1)){

             this.setExclusiveOwnerThread(Thread.currentThread());

         }else{

             // 1调用acquire(1) 会先调用tryAcquire, 再次尝试获取锁,和当前线程的是否是独占锁线程的判断

       // tryAcquire 返回false ,则执行this.acquireQueued(this.addWaiter(AbstractQueuedSynchronizer.Node.EXCLUSIVE), var1)

             this.acquire(1);

         }

     }   

     protected final boolean tryAcquire(int var1){

         return this.nonfairTryAcquire(var1);

     }

 }

 abstract static class Sync extends AbstractQueuedSynchronizer{}

      final boolean  nonfairTryAcquire(int var1){

          Thread var2 = Thread.currentThread();

       //首先获取状态锁的数量, 是0,表示当前锁已经被释放,

          int var3 = this.getState();

          if(var3 == 0){

                        //继续基于cas将state(锁数量)重0设置1,成功,设置当前线程为独占线程;请求成功则插队;

              if([this.compareAndSetState(0](http://this.compareandsetstate(0/),1)){

                                   this.setExclusiveOwnerThread(Thread.currentThread());

                                   return true;

                            }

           }else if(var2 == this.getExclusiveOwnerThread()){

              //判断当前的线程是不是独占锁的线程, 是就将状态值加1(锁的数量可以大于1)--〉请求成功

        int var4 = var3 + var1;

                        if (var4 < 0) {

                                   throw new Error("Maximum lock count exceeded");

                        }

                        this. setState(var4);

                       return true

           }

      return false;

      }

}

AbstractQueuedSynchronizer

public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer implements Serializable{

  protected final boolean compareAndSetState(int var1, int var2) { 

      return [unsafe.compareAndSwapInt](http://unsafe.compareandswapint/)(this, stateOffset, var1, var2);

  }

  public final void acquire(int var1) {

    if (!this.tryAcquire(var1) && this.acquireQueued(this.addWaiter(AbstractQueuedSynchronizer.Node.EXCLUSIVE), var1)) {

       selfInterrupt();

    }

  }

   //将当前线程封装成Node中, 然后加入等待队列

   private AbstractQueuedSynchronizer.Node addWaiter(AbstractQueuedSynchronizer.Node var1) {

         AbstractQueuedSynchronizer.Node var2 = new AbstractQueuedSynchronizer.Node(Thread.currentThread(), var1);

     AbstractQueuedSynchronizer.Node var3 = this.tail;

     如果同步等待队列存在尾节点,将使用cas尝试降尾节点设置var2 ,并将之前的尾节点插入到node之前

     if (var3 != null) {

        var2.prev = var3;

        if (this.compareAndSetTail(var3, var2)) {

          var3.next = var2;

          return var2;

       }

     }

    //如果不存在尾节点, 或者cas操作失败,就进入正常入队

    this.enq(var2);

    return var2;

  }

   //循环直道入队为止

        private AbstractQueuedSynchronizer.Node enq(AbstractQueuedSynchronizer.Node var1) {

             while(true) {

                  AbstractQueuedSynchronizer.Node var2 = this.tail;

                  if (var2 == null) {

         //尾节点为空, 创建一个dummy节点,并设置到头节点上, 成功后,将尾节点也指向该dummy节点

                       if (this.compareAndSetHead(new AbstractQueuedSynchronizer.Node())) {

                               this.tail = this.head;

                      }

               } else {

                   var1.prev = var2;

                   if (this.compareAndSetTail(var2, var1)) {

                           var2.next = var1;

                           return var2;

                   }

              }

          }

  }

   //返回true 会中断自己

        final boolean acquireQueued(AbstractQueuedSynchronizer.Node var1, int var2) {

                boolean var3 = true;

                try {

                        boolean var4 = false;

                        while(true) {

          //获取插入的前一个节点

                                AbstractQueuedSynchronizer.Node var5 = var1.predecessor();

          //第一次成功, 返回的是true ,不需要中断自己

                                if (var5 == this.head && this.tryAcquire(var2)) {

                                            this.setHead(var1);

                                            var5.next = null;

                                            var3 = false;

                                            boolean var6 = var4;

                                            return var6;

                                    }

                                if (shouldParkAfterFailedAcquire(var5, var1) && this.parkAndCheckInterrupt()) {

             //挂起后操作,会改变变量返回值, 下次循环推出 会调用中断的操作了

                                      var4 = true;

                                }

                        }

            } finally {

                    if (var3) {

                        this.cancelAcquire(var1);

                    }

            }

}

}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容