2020-04-24

                                        ML

阿里天池“二手车交易案例”提供很多数据挖掘,数据分析的代码,可参考

分类:knn ,逻辑回归,决策树

回归:线性回归,神经网络,决策树

knn 中的距离其实就可以看作一种标签,当求出待分类的物体,离哪 k 个最近时,不就意味着他的标签与这 k 个物体的标签最接近么?

from sklearn import linear_model

from sklearn.preprocessing import StandardScaler    #引入缩放的包

# 归一化操作

    scaler = StandardScaler() 

    scaler.fit(X)

    x_train = scaler.transform(X)

    x_test = scaler.transform(np.array([1650,3]))

sklrarn. preprocessing 中有专门的归一化函数 scaler(),只不过在此之前需要将 X 转换成 (-1,1)或者是 (1,-1)的 ndarray

sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)

normalize:默认值为True,返回正确分类的比例;如果为False,返回正确分类的样本数

import numpy as np

from sklearn.metrics import accuracy_score

y_pred = [0, 1, 0, 1]

y_true = [0, 1, 1, 1]

print('ACC:',accuracy_score(y_true, y_pred))

accuracy_score(y_true,y_pred,normalize=False)

# help(accuracy_score)

## AUC

import numpy as np

from sklearn.metrics import roc_auc_score

y_true = np.array([0, 0, 1, 1])

y_scores = np.array([0.1, 0.4, 0.35, 0.8])

print('AUC socre:',roc_auc_score(y_true, y_scores))

## Precision,Recall,F1-score

from sklearn import metrics

y_pred = [0, 1, 0, 0]

y_true = [0, 1, 0, 1]

print('Precision',metrics.precision_score(y_true, y_pred))

print('Recall',metrics.recall_score(y_true, y_pred))

print('F1-score:',metrics.f1_score(y_true, y_pred))

# coding=utf-8

import numpy as np

from sklearn import metrics

# MAPE需要自己实现

def mape(y_true, y_pred):

    return np.mean(np.abs((y_pred - y_true) / y_true))

y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])

y_pred = np.array([1.0, 4.5, 3.8, 3.2, 3.0, 4.8, -2.2])

# MSE

print('MSE:',metrics.mean_squared_error(y_true, y_pred))

# RMSE

print('RMSE:',np.sqrt(metrics.mean_squared_error(y_true, y_pred)))

# MAE

print('MAE:',metrics.mean_absolute_error(y_true, y_pred))

# MAPE

print('MAPE:',mape(y_true, y_pred))

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容