698 Partition to K Equal Sum Subsets 划分为k个相等的子集
Description:
Given an integer array nums and an integer k, return true if it is possible to divide this array into k non-empty subsets whose sums are all equal.
Example:
Example 1:
Input: nums = [4,3,2,3,5,2,1], k = 4
Output: true
Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Example 2:
Input: nums = [1,2,3,4], k = 3
Output: false
Constraints:
1 <= k <= nums.length <= 16
1 <= nums[i] <= 10^4
The frequency of each element is in the range [1, 4].
题目描述:
给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
示例 :
示例 1:
输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
输出: True
说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。
提示:
1 <= k <= len(nums) <= 16
0 < nums[i] < 10000
思路:
回溯法
参考LeetCode #416 Partition Equal Subset Sum 分割等和子集
如果 k == 1, 直接返回 true, 全部分为 1 组即可
先计算数组和 sum
如果 sum % k != 0, 说明不能恰好分割为 k 组, 直接返回 false
准备 k 个容量为 sum / k 的桶
对数组进行排序
然后按顺序放入数组元素
需要对桶进行去重, 如果不是第一个桶, 与前面的桶元素相同就跳过
只有两种情况可以放入元素, 第一是桶剩下的空间刚好等于数组元素, 第二种是桶剩下的空间不小于数组元素和最小元素之和, 这时候可以尝试一个桶放入多个数组元素
直到遍历完数组元素
时间复杂度为 O(2 ^ n * k), 空间复杂度为 O(n)
代码:
C++:
class Solution
{
public:
bool canPartitionKSubsets(vector<int>& nums, int k)
{
if (k == 1) return true;
sort(nums.begin(), nums.end());
int s = accumulate(nums.begin(), nums.end(), 0), n = nums.size();
if (s % k) return false;
vector<int> bucket(k, s / k);
return trackback(nums, bucket, k, n - 1);
}
private:
bool trackback(vector<int>& nums, vector<int>& bucket, int k, int cur)
{
if (cur < 0) return true;
for (int i = 0; i < k; i++)
{
if (i and bucket[i] == bucket[i - 1]) continue;
if (bucket[i] == nums[cur] or bucket[i] >= nums[cur] + nums.front())
{
bucket[i] -= nums[cur];
if (trackback(nums, bucket, k, cur - 1)) return true;
bucket[i] += nums[cur];
}
}
return false;
}
};
Java:
class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
if (k == 1) return true;
int s = 0, n = nums.length;
for (int num : nums) s += num;
if (s % k != 0) return false;
int bucket[] = new int[k];
Arrays.fill(bucket, s / k);
Arrays.sort(nums);
return trackback(nums, bucket, k, n - 1);
}
private boolean trackback(int[] nums, int[] bucket, int k, int cur) {
if (cur < 0) return true;
for (int i = 0; i < k; i++) {
if (i > 0 && bucket[i] == bucket[i - 1]) continue;
if (bucket[i] == nums[cur] || bucket[i] >= nums[cur] + nums[0]) {
bucket[i] -= nums[cur];
if (trackback(nums, bucket, k, cur - 1)) return true;
bucket[i] += nums[cur];
}
}
return false;
}
}
Python:
class Solution:
def canPartitionKSubsets(self, nums: List[int], k: int) -> bool:
if k == 1:
return True
bucket = [(s := sum(nums)) // k] * (n := len(nums))
if s % k:
return False
nums.sort()
def trackback(cur: int) -> bool:
if cur < 0:
return True
for i in range(k):
if i and bucket[i] == bucket[i - 1]:
continue
if bucket[i] == nums[cur] or bucket[i] >= nums[cur] + nums[0]:
bucket[i] -= nums[cur]
if trackback(cur - 1):
return True
bucket[i] += nums[cur]
return False
return trackback(n - 1)