大数据架构简述流处理、批处理、交互式查询

我们将大数据处理按处理时间的跨度要求分为以下几类

基于实时数据流的处理,通常的时间跨度在数百毫秒到数秒之间

基于历史数据的交互式查询,通常时间跨度在数十秒到数分钟之间

复杂的批量数据处理,通常的时间跨度在几分钟到数小时之间

1.流处理
流是一种数据传送技术,它把客户端数据变成一个稳定的流。正是由于数据传送呈现连续不停的形态,所以流引擎需要连续不断处理数据

流处理的主要应用场景:金融领域和电信领域

1.1 Stom
Storm是一个免费开源、分布式、高容错的实时计算系统。

Storm主要分为两种组件Nimbus和Supervisor。这两种组件都是快速失败的,没有状态。任务状态和心跳信息等都保存在Zookeeper上的,提交的代码资源都在本地机器的硬盘上。
1)Nimbus负责在集群里面发送代码,分配工作给机器,并且监控状态。全局只有一个。
2)Supervisor会监听分配给它那台机器的工作,根据需要启动/关闭工作进程Worker。每一个要运行Storm的机器上都要部署一个,并且,按照机器的配置设定上面分配的槽位数。
3)Zookeeper是Storm重点依赖的外部资源。Nimbus和Supervisor甚至实际运行的Worker都是把心跳保存在Zookeeper上的。Nimbus也是根据Zookeerper上的心跳和任务运行状况,进行调度和任务分配的。
4)Storm提交运行的程序称为Topology。
5)Topology处理的最小的消息单位是一个Tuple,也就是一个任意对象的数组。
Topology由Spout和Bolt构成。Spout是发出Tuple的结点。Bolt可以随意订阅某个Spout或者Bolt发出的Tuple。Spout和Bolt都统称为component。

1.2 Spark Streaming
Spark Streaming是一种构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。

Spark Streaming的基本原理是将输入数据流以时间片(秒级)为单位进行拆分,然后以类似批处理的方式处理每个时间片数据

2.交互式查询(Adhoc Query)
在商业智能领域少量更新和大量扫描分析场景,目前是Impala+Kudu/Hive/Spark SQL/Greenplum Mpp数据库在混战。

3.批处理技术
3.1 MapReduce(Hadoop)
MapReduce模式的主要思想是自动将一个大的计算拆解成Map和Reduce

3.2 Spark
Spark的中间数据放到内存中,对于迭代运算效率更高。
Spark更适合于迭代运算比较多的ML和DM运算。因为在Spark里面,有RDD的抽象概念。
Spark比Hadoop更通用
Spark提供的数据集操作类型有很多种,不像Hadoop只提供了Map和Reduce两种操作。比如map, filter, flatMap, sample, groupByKey, reduceByKey, union, join, cogroup, mapValues, sort,partionBy等多种操作类型,Spark把这些操作称为Transformations。同时还提供Count, collect, reduce, lookup, save等多种actions操作。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,192评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,858评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,517评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,148评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,162评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,905评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,537评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,439评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,956评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,083评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,218评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,899评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,565评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,093评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,201评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,539评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,215评论 2 358

推荐阅读更多精彩内容