16 Spark Streaming源码解读之数据清理

  1. Spark Streaming程序的运行,不断的产生job,不断的生成RDD、不断的接收数据存储数据,不断的保存元数据等,如果不清理这些数据,内存和磁盘空间都会崩溃,看一下Spark Streaming是如何做清理工作的
  2. Spark Streaming在Job运行完成时会触发数据清理动作,看JobHandler中run()方法的代码
def run() {
      try {
        val formattedTime = UIUtils.formatBatchTime(job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false)
        val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}"
        val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]"

        ssc.sc.setJobDescription(
          s"""Streaming job from <a href="$batchUrl">$batchLinkText</a>""")
        ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)
        ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)

        // We need to assign `eventLoop` to a temp variable. Otherwise, because
        // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then
        // it's possible that when `post` is called, `eventLoop` happens to null.
        var _eventLoop = eventLoop
        if (_eventLoop != null) {
          _eventLoop.post(JobStarted(job, clock.getTimeMillis()))
          // Disable checks for existing output directories in jobs launched by the streaming
          // scheduler, since we may need to write output to an existing directory during checkpoint
          // recovery; see SPARK-4835 for more details.
          PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
            // run方法中包含了job的提交函数,触发sparkContext.runJob,真正的提交job
            job.run()
          }
          _eventLoop = eventLoop
          if (_eventLoop != null) {
            _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
          }
        } else {
          // JobScheduler has been stopped.
        }
      } finally {
        ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)
        ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)
      }
 }

job.run执行之后,job运行完成。发送一个JobCompleted消息给事件循环器,事件循环器调用handleJobCompletion()方法,代码如下

private def handleJobCompletion(job: Job, completedTime: Long) {
    val jobSet = jobSets.get(job.time)
    jobSet.handleJobCompletion(job)
    job.setEndTime(completedTime)
    listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
    logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
    if (jobSet.hasCompleted) {
      jobSets.remove(jobSet.time)
      jobGenerator.onBatchCompletion(jobSet.time)
      logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
        jobSet.totalDelay / 1000.0, jobSet.time.toString,
        jobSet.processingDelay / 1000.0
      ))
      listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
    }
    job.result match {
      case Failure(e) =>
        reportError("Error running job " + job, e)
      case _ =>
    }
}
  1. 这里判断了jobSet是否完成,如果完成调用jobGenerator的onBatchCompletion方法,代码如下
jobGenerator.onBatchCompletion(jobSet.time)

onBachCompletion的代码如下

def onBatchCompletion(time: Time) { 
      eventLoop.post(ClearMetadata(time))
}

然后发送一个ClearMetadata消息,看他的ClearMetadata的处理方法,代码如下

 private def clearMetadata(time: Time) {
    ssc.graph.clearMetadata(time)

    // If checkpointing is enabled, then checkpoint,
    // else mark batch to be fully processed
    if (shouldCheckpoint) {
      eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    } else {
      // If checkpointing is not enabled, then delete metadata information about
      // received blocks (block data not saved in any case). Otherwise, wait for
      // checkpointing of this batch to complete.
      val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
      jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
      jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
      markBatchFullyProcessed(time)
    }
}
  1. 这里调用了DStreamGreph的clearMetadata()方法,代码如下
def clearMetadata(time: Time) {
    logDebug("Clearing metadata for time " + time)
    this.synchronized {
      outputStreams.foreach(_.clearMetadata(time))
    }
    logDebug("Cleared old metadata for time " + time)
}

分别调用每一个outputStream的clearMetadata(time)方法,代码如下

private[streaming] def clearMetadata(time: Time) {
    val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true)
    val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
    logDebug("Clearing references to old RDDs: [" +
      oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")
    generatedRDDs --= oldRDDs.keys
    if (unpersistData) {
      logDebug("Unpersisting old RDDs: " + oldRDDs.values.map(_.id).mkString(", "))
      oldRDDs.values.foreach { rdd =>
        rdd.unpersist(false)
        // Explicitly remove blocks of BlockRDD
        rdd match {
          case b: BlockRDD[_] =>
            logInfo("Removing blocks of RDD " + b + " of time " + time)
            b.removeBlocks()
          case _ =>
        }
      }
    }
    logDebug("Cleared " + oldRDDs.size + " RDDs that were older than " +
      (time - rememberDuration) + ": " + oldRDDs.keys.mkString(", "))
    dependencies.foreach(_.clearMetadata(time))
}
  1. 第一步从generatedRDDs中过滤出不用的oldRDDs ,过滤的依据是当前batch的时间-rememberDuration,rememberDuration很关键,一般是batch的倍数,如果有windows操作,他会加上windowsDuration,最终结果就是保证还需要被使用的RDD不被清理。
    第二步从内存数据结构generatedRDDs中删除oldRDDs
    第三步判断是否清理RDD的持久化数据,默认是清理,调用rdd的unpersist方法清理缓存数据。如果是BlockRDD,调用BlockRDD的removeBlocks()方法,从BlockManager中清除BlockRDD接收的数据
    第四步清理依赖关系
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容