基于三维人脸网格模型的二维人脸纹理贴图matlab仿真

1.算法理论概述

      二维人脸纹理贴图是计算机视觉领域中的一个重要研究方向,其目的是将三维人脸模型的纹理信息映射到二维图像上,以便于进行人脸识别、表情分析等应用。本文将详细介绍基于三维人脸网格模型的二维人脸纹理贴图的实现步骤和数学公式。


1.1三维人脸网格模型


       三维人脸网格模型是指将人脸表面建模为由三角形组成的网格模型。三维人脸网格模型可以通过3D扫描仪、结构光等设备获取,也可以通过三维重建算法从多个二维图像中重建得到。三维人脸网格模型包括顶点、边和面等基本元素,其中每个顶点都包含了其在三维空间中的坐标和在二维图像中的纹理坐标。


1.2二维人脸纹理映射


      二维人脸纹理映射是指将三维人脸网格模型的纹理信息映射到二维图像上,以便于进行人脸识别、表情分析等应用。二维人脸纹理映射的主要步骤包括纹理坐标计算、纹理映射和纹理滤波等。


       在纹理坐标计算中,需要将三维人脸网格模型中每个顶点的纹理坐标计算出来。纹理坐标是指在纹理图像中对应于三维模型上每个顶点的坐标。纹理坐标的计算可以通过三维模型中每个面的纹理坐标和顶点在面中的权重来计算得到。


       在纹理映射中,需要将三维人脸网格模型中的纹理信息映射到二维图像上。纹理映射可以通过将三维模型上每个面的纹理映射到二维图像上来实现。其中,纹理映射的方法包括透视纹理映射、立方体纹理映射等。


      在纹理滤波中,需要对纹理图像进行滤波处理,以提高纹理质量和减少噪声。常用的纹理滤波方法包括高斯滤波、双边滤波等。


1.3实现步骤


基于三维人脸网格模型的二维人脸纹理贴图的具体实现步骤如下:


(1)获取三维人脸网格模型,包括顶点、边和面等基本元素。


(2)对三维人脸网格模型进行纹理坐标计算,得到每个顶点在纹理图像中对应的坐标。


(3)将纹理图像映射到三维人脸网格模型上,得到二维人脸纹理图像。


(4)对二维人脸纹理图像进行纹理滤波处理,以提高纹理质量和减少噪声。


(5)将二维人脸纹理图像映射到原始图像中的人脸部分上。


1.4数学公式


二维人脸纹理贴图中常用的数学公式主要包括纹理坐标计算和纹理映射两个部分。


(1)纹理坐标计算


其中,$x,y,z$ 分别表示三维模型中的坐标,$f$ 表示相机的焦距,$w,h$ 分别表示二维图像的宽度和高度。通过将三维模型中每个面的纹理映射到二维图像上,可以得到二维人脸纹理图像。

       本文详细介绍了基于三维人脸网格模型的二维人脸纹理贴图的实现步骤和数学公式。在实现过程中,需要对三维人脸网格模型进行纹理坐标计算,并将纹理信息映射到二维图像上。同时,为了提高纹理质量和减少噪声,还需要对二维人脸纹理图像进行滤波处理。这些方法和算法在人脸识别、表情分析等应用中具有重要的意义。



2.算法运行软件版本

matlab2022A


3.算法运行效果图预览



4.部分核心程序

[RR,CC,kk] = size(A);

for i = 1:3

   A2(:,:,i) = [zeros(RR,300,1),A(1:RR,300:CC-300,i),zeros(RR,307,1)];

end

A3 = imrotate(A2,-2.5,'bicubic','crop');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[RR,CC,kk] = size(A3);

%核心算法,将三维点打散到映射图上

V  =vertices_';

F  =faces';

uv = func_cem_map(F,V);

xs = CC/2*(uv(:,2)-min(uv(:,2)));

ys = RR/2*(1-uv(:,1)-min(1-uv(:,1)));


figure;%调整,直到对齐为止

plot(xs,ys,'r.')

xlabel('x');

ylabel('y');


figure;%调整,直到对齐为止

imshow(A3);

hold on

plot(xs,RR-ys,'r.')

xlabel('x');

ylabel('y');



Vrgb = zeros(3,length(V));

for i = 1:length(Vrgb)

   Vrgb(1,i)=A3(min(floor(RR-ys(i))+1,RR),floor(xs(i))+1,1);

   Vrgb(2,i)=A3(min(floor(RR-ys(i))+1,RR),floor(xs(i))+1,2);

   Vrgb(3,i)=A3(min(floor(RR-ys(i))+1,RR),floor(xs(i))+1,3);

end

Vrgb=0.9*Vrgb/255;



figure

PlotMesh(F, V, Vrgb');

title('The inputted surface');

pause(0.01)

view([-50,30]);

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容