米思齐分享-02-超声波测距案例讲解

超声波测距是通过超声波传感器测量距离的过程。

下面我们来讲解一下超声波测距实验的过程:

一、实验元件

Aduino UNO板 ×1

USB数据线 × 1

1p杜邦线 × 4

超声波传感器 × 1

LCD1602液晶传感器× 1

二、实验原理

1、超声波传感器的工作原理:超声波传感器向某一方向发射超声波,在发射的同时开始计时;超声波在空气中传播,途中遇到障碍物则立即返回,超声波接收器收到反射波则立即停止计时。声波在空气中传播速度为340m/s,根据计时器记录时间t,即可算出发射点距离障碍物的距离S,即S=340m/s*t/2,这就是所谓的时间差测距法。

超声波传感器

2、使用Arduino采用数字引脚给SR04的Trig引脚至少10μs的高电平信号,触发SR04模块测距功能。

     触发后,模块会自动发送8个40KHz的超声波脉冲,并自动检测是否有信号返回。这步会由模块内部自动完成。

     如有信号返回,Echo引脚会输出高电平,高电平持续的时间就是超声波从发射到返回的时间。此时,我们能使用pulseIn()函数获取到测距的结果,并计算出距被测物的实际距离。

传感器工作过程

传感器工作过程

三、实验过程

1、电路图

超声波测距电路图

超声波测距电路图

2、实验代码

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

volatile float dist;                                  //定义一个不稳定的变量为浮点型

LiquidCrystal_I2C mylcd(0x27,16,2);   //课程套件中所用的显示器类型,两行显示,每行16个字符,0x27为课程所用套件的LCD液晶屏IIC地址,第三方的IIC协议LCD液晶屏地址默认为0x27

float checkdistance_4_7() {                  //超声波传感器测距的公式

  digitalWrite(4, LOW);

  delayMicroseconds(2);

  digitalWrite(4, HIGH);

  delayMicroseconds(10);               //给超声波传感器的Trig引脚至少10us的高电平信号

  digitalWrite(4, LOW);

  float distance = pulseIn(7, HIGH) / 58.00;     //计算距离的公式

  delay(10);

  return distance;

}

void setup(){

  dist = 0;                       //设置距离的初始值为0

  pinMode(4, OUTPUT);     //设置A4为输出端口

  pinMode(7, INPUT);    //设置A7为输入端口

  mylcd.init();                        //液晶屏初始化

  mylcd.backlight();

}

void loop(){                           //将距离值在液晶屏上显示

  dist = checkdistance_4_7();

  if (dist < 1000) {

    mylcd.clear();

    mylcd.setCursor(0, 0);

    mylcd.print("Distance(cm):");

    mylcd.setCursor(0, 1);

    mylcd.print(dist);

    delay(1000);

  }

}

四、实验结果

1、显示屏上的距离数据随传感器里物体的 距离的变化而变化:

2、若在实验过程中无LCD显示屏,可修改关于LCD的相关代码,通过串口监视器监测数据。

修改代码:

无LCD电路连接图

无LCD电路连接图

串口监视器中测量到的距离

串口监视器中测量到的距离

五、反思与总结

1.出现的问题及解决方法

(1)上传一直失败,原因是没将实验板的型号改为Arduino Uno。

(2)串口监视器结果为0,距离变化无反应。原因是超声波传感器的Echo端口为输出口,实际上对应的是Uno板7端口,即我们所设置的INPUT输入口,Trig端口对应的是4端口,是触发控制信号输入的端口,开始时将输入输出口接反了。

(3)代码修改错误。原因是只设置了输出,没有初始化串口通信,设置波特率,少了Serial.begin(9600);这一句。所以为了防止出错,可以从模块部分进行修改,修改完后代码也修改了。

2.收获

(1)Mixly既可以通过代码,也可以通过模块来完成实验,可以根据自己的喜好来选择。

(2)出现错误一定要多加尝试,代码、连线多方面排除问题,不要直接以为元件是坏的。

(3)我们利用本实验测量了全宿舍的身高,该超声波传感器的误差很小。在我们粗糙的手法下,误差在1、2厘米左右。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容