Scikit-learn in Python 去年学的最重要的机器学习工具

scikit-learn in Python – the most important Machine Learning tool I learnt last year!

This article went through a series of changes!

I was initially writing on a different topic (related to analytics). I had almost finished writing it. I had put in about 2 hours and written an average article. If I had made it live, it would have done OK! But something in me stopped me from making it live. I was just not satisfied with the output. The article didn’t convey how I am feeling about 2015 and how useful Analytics Vidhya could become for your analytics learning this year.

So, I put that article in Trash and started re-thinking which topic would do the justice. This is what I ended up with – let me write awesome articles and guides about what was my biggest learning in 2014 – The Scikit-learn library in Python. This was my biggest learning because it is now the tool I use for any machine learning project I work upon.

Creating these articles would not only be immensely useful for readers of the blog, but would also challenge me in writing about something I am still relatively new at. I would also love to hear from you on the same – what was your biggest learning in 2014 and would you want to share it with readers of this blog?

What is scikit-learn?

Scikit-learn is probably the most useful library for machine learning in Python. It is on NumPy, SciPy and matplotlib, this library contains a lot of effiecient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.

Please note that scikit-learn is used to build models. It should not be used for reading the data, manipulating and summarizing it. There are better libraries for that (e.g. NumPy, Pandas etc.)

Components of scikit-learn:

Scikit-learn comes loaded with a lot of features. Here are a few of them to help you understand the spread:

Supervised learning algorithms:Think of any supervised learning algorithm you might have heard about and there is a very high chance that it is part of scikit-learn. Starting from Generalized linear models (e.g Linear Regression), Support Vector Machines (SVM), Decision Trees to Bayesian methods – all of them are part of scikit-learn toolbox. The spread of algorithms is one of the big reasons for high usage of scikit-learn. I started using scikit to solve supervised learning problems and would recommend that to people new to scikit / machine learning as well.

Cross-validation:There are various methods to check the accuracy of supervised models on unseen data

Unsupervised learning algorithms:Again there is a large spread of algorithms in the offering – starting from clustering, factor analysis, principal component analysis to unsupervised neural networks.

Various toy datasets:This came in handy while learning scikit-learn. I had learnt SAS using various academic datasets (e.g. IRIS dataset, Boston House prices dataset). Having them handy while learning a new library helped a lot.

Feature extraction:Useful for extracting features from images and text (e.g. Bag of words)

Community / Organizations using scikit-learn:

One of the main reasons behind using open source tools is the huge community it has. Same is true for scikit-learn ass well. There are about 35 contributors to scikit learn till date, the most notable being Andreas Mueller (P.S. Andy’smachine learning cheat sheetis one of the best visualizations to understand the spectrum of machine learning algorithms).

There are various Organiations of the likes of Evernote, Inria and AWeber which are being displayed onscikit learn home pageas users. But I truly believe that the actual usage is far more.

In addition to these communities, there are various meetups across the globe. There was also aKaggle knowledge contest, which finished recently but might still be one of the best places to start playing around with the library.

Machine Learning cheat sheet – see Original image for better resolution

Quick Example:

Now that you understand the eco-system at a high level, let me illustrate the use of scikit learn with an example. The idea is to just illustrate the simplicity of usage of scikit-learn. We will have a look at various algorithms and best ways to use them in one of the articles which follow.

We will build a logistic regression on IRIS dataset:

Step 1: Import the relevant libraries and read the dataset

import numpy as np

import matplotlib as plt

from sklearn import datasets

from sklearn import metrics

from sklearn.linear_model import LogisticRegression

We have imported all the libraries. Next, we read the dataset:

dataset = datasets.load_iris()

Step 2: Understand the dataset by looking at distributions and plots

I am skipping these steps for now. You can readthis article, if you want to learn exploratory analysis.

Step 3: Build a logistic regression model on the dataset and making predictions

model.fit(dataset.data, dataset.target)

expected = dataset.target

predicted = model.predict(dataset.data)

Step 4: Print confusion metrix

print(metrics.classification_report(expected, predicted))

print(metrics.confusion_matrix(expected, predicted))

End Notes:

This was an overview of one of the most powerful and versatile machine learning library in Python. It was also the biggest learning I did in 2014. What was your biggest learning in 2014? Please share it with the group through comments below.

Are you excited about learning and using Scikit-learn? If Yes, stay tuned for the remaining articles in this series.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,616评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,020评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,078评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,040评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,154评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,265评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,298评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,072评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,491评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,795评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,970评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,654评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,272评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,985评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,815评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,852评论 2 351

推荐阅读更多精彩内容