1.使用__slots__
class Student(object):
pass
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael
还可以尝试给实例绑定一个方法:
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25
但是,给一个实例绑定的方法,对另一个实例是不起作用的:
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'
为了给所有实例都绑定方法,可以给class绑定方法:
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score
给class绑定方法后,所有实例均可调用:
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99
使用__slots__
但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加name和age属性。
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'
使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,
对继承的子类是不起作用的:
除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是
自身的__slots__加上父类的__slots__。
2.使用@property
还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:
class Student(object):
@property
def birth(self):
return self._birth
@birth.setter
def birth(self, value):
self._birth = value
@property
def age(self):
return 2015 - self._birth
# 利用@property给一个Screen对象加上width和height属性,以及一个只读属性resolution
# width/height unit: px
class Screen(object):
def __init__(self):
self.__height = 0
self.__width = 0
@staticmethod
def __check_param(value):
if not isinstance(value, int):
raise TypeError('Must a int type')
if value <= 0:
raise ValueError('Must great than zero')
@property
def width(self):
return self.__width
@width.setter
def width(self, value):
self.__check_param(value)
self.__width = value
@property
def height(self):
return self.__height
@height.setter
def height(self, value):
self.__check_param(value)
self.__height = value
@property
def resolution(self):
return self.__width * self.__height
# test:
s = Screen()
s.width = 1024
s.height = 768
print(s.resolution) # 786432
assert s.resolution == 786432, '1024 * 768 = %d ?' % s.resolution
4.多继承
class Bat(Mammal, Flyable):
pass
5.定制类
看到类似slots这种形如xxx的变量或者函数名就要注意,这些在Python中是有特殊用途的。
slots我们已经知道怎么用了,len()方法我们也知道是为了能让class作用于len()函数。
除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。
1)__str__
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>
改变打印方式
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)
而
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>
这是因为直接显示变量调用的不是__str__(),而是__repr__()
,两者的区别是__str__()返回用户看到的字符串,而__repr__()
返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__
2)__iter__
如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,直到遇到StopIteration错误时退出循环。
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b
def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己
def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration();
return self.a # 返回下一个值
现在,试试把Fib实例作用于for循环:
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025
3)__getitem__
Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
现在,就可以按下标访问数列的任意一项了:
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101
但是list有个神奇的切片方法
>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]
对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop
if start is None:
start = 0
a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L
与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。
总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。
4)__getattr__
当我们调用类的方法或属性时,如果不存在,就会报错。
>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'
Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:
class Student(object):
def __init__(self):
self.name = 'Michael'
def __getattr__(self, attr):
if attr=='score':
return 99
返回函数也是完全可以的:
class Student(object):
def __getattr__(self, attr):
if attr=='age':
return lambda: 25
>>> s.age()
25
5)__call__()
还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。
class Student(object):
def __init__(self, name):
self.name = name
def __call__(self):
print('My name is %s.' % self.name)
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.
通过callable()函数,我们就可以判断一个对象是否是“可调用”对象
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False
6.使用枚举类
from enum import Enum
Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
//打印
for name, member in Month.__members__.items():
print(name, '=>', member, ',', member.value)
value属性则是自动赋给成员的int常量,默认从1开始计数。
如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:
from enum import Enum, unique
//@unique装饰器可以帮助我们检查保证没有重复值。
@unique
class Weekday(Enum):
Sun = 0 # Sun的value被设定为0
Mon = 1
Tue = 2
Wed = 3
Thu = 4
Fri = 5
Sat = 6
访问这些枚举类型可以有若干种方法:
>>> day1 = Weekday.Mon
>>> print(day1)
Weekday.Mon
>>> print(Weekday.Tue)
Weekday.Tue
>>> print(Weekday['Tue'])
Weekday.Tue
>>> print(Weekday.Tue.value)
2
>>> print(day1 == Weekday.Mon)
True
>>> print(day1 == Weekday.Tue)
False
>>> print(Weekday(1))
Weekday.Mon
>>> print(day1 == Weekday(1))
True
>>> Weekday(7)
Traceback (most recent call last):
...
ValueError: 7 is not a valid Weekday
>>> for name, member in Weekday.__members__.items():
... print(name, '=>', member)
...
Sun => Weekday.Sun
Mon => Weekday.Mon
Tue => Weekday.Tue
Wed => Weekday.Wed
Thu => Weekday.Thu
Fri => Weekday.Fri
Sat => Weekday.Sat