Spring的Bean是单例的吗,Controller是否是单例?
默认单例,可以配置成非单例(prototype)
是单例,注意变量的共享问题
在装配Bean前怎么对Bean进行配置?
bean配置有三种方法:
- 基于xml配置Bean
- 使用注解定义Bean
- 基于java类提供Bean定义信息
依赖注入:
- 属性注入
- 构造函数注入
- 工厂方式注入
注解定义:
@Component、@Repository、@Service、@Controller
使用@Autowired进行自动注入:
使用@Autowired的required属性、使用@Qualifier指定注入Bean的名称
MySQL数据库MyIsam和Innodb的区别?
InnoDB和MyISAM是许多人在使用MySQL时最常用的两个表类型,这两个表类型各有优劣,视具体应用而定。基本的差别为:MyISAM类型不支持事务处理等高级处理,而InnoDB类型支持。MyISAM类型的表强调的是性能,其执行数度比InnoDB类型更快,但是不提供事务支持,而InnoDB提供事务支持以及外部键等高级数据库功能。
以下是一些细节和具体实现的差别:
1.InnoDB不支持FULLTEXT类型的索引。
2.InnoDB 中不保存表的具体行数,也就是说,执行select count() from table时,InnoDB要扫描一遍整个表来计算有多少行,但是MyISAM只要简单的读出保存好的行数即可。注意的是,当count()语句包含 where条件时,两种表的操作是一样的。
3.对于AUTO_INCREMENT类型的字段,InnoDB中必须包含只有该字段的索引,但是在MyISAM表中,可以和其他字段一起建立联合索引。
4.DELETE FROM table时,InnoDB不会重新建立表,而是一行一行的删除。
5.LOAD TABLE FROM MASTER操作对InnoDB是不起作用的,解决方法是首先把InnoDB表改成MyISAM表,导入数据后再改成InnoDB表,但是对于使用的额外的InnoDB特性(例如外键)的表不适用。
另外,InnoDB表的行锁也不是绝对的,假如在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表,例如update table set num=1 where name like “%aaa%”
两种类型最主要的差别就是Innodb 支持事务处理与外键和行级锁。而MyISAM不支持.所以MyISAM往往就容易被人认为只适合在小项目中使用。
作为使用MySQL的用户角度出发,Innodb和MyISAM都是比较喜欢的,如果数据库平台要达到需求:99.9%的稳定性,方便的扩展性和高可用性来说的话,MyISAM绝对是首选。
原因如下:
1、平台上承载的大部分项目是读多写少的项目,而MyISAM的读性能是比Innodb强不少的。
2、MyISAM的索引和数据是分开的,并且索引是有压缩的,内存使用率就对应提高了不少。能加载更多索引,而Innodb是索引和数据是紧密捆绑的,没有使用压缩从而会造成Innodb比MyISAM体积庞大不小。
3、经常隔1,2个月就会发生应用开发人员不小心update一个表where写的范围不对,导致这个表没法正常用了,这个时候MyISAM的优越性就体现出来了,随便从当天拷贝的压缩包取出对应表的文件,随便放到一个数据库目录下,然后dump成sql再导回到主库,并把对应的binlog补上。如果是Innodb,恐怕不可能有这么快速度,别和我说让Innodb定期用导出xxx.sql机制备份,因为最小的一个数据库实例的数据量基本都是几十G大小。
4、从接触的应用逻辑来说,select count(*) 和order by 是最频繁的,大概能占了整个sql总语句的60%以上的操作,而这种操作Innodb其实也是会锁表的,很多人以为Innodb是行级锁,那个只是where对它主键是有效,非主键的都会锁全表的。
5、还有就是经常有很多应用部门需要我给他们定期某些表的数据,MyISAM的话很方便,只要发给他们对应那表的frm.MYD,MYI的文件,让他们自己在对应版本的数据库启动就行,而Innodb就需要导出xxx.sql了,因为光给别人文件,受字典数据文件的影响,对方是无法使用的。
6、如果和MyISAM比insert写操作的话,Innodb还达不到MyISAM的写性能,如果是针对基于索引的update操作,虽然MyISAM可能会逊色Innodb,但是那么高并发的写,从库能否追的上也是一个问题,还不如通过多实例分库分表架构来解决。
7、如果是用MyISAM的话,merge引擎可以大大加快应用部门的开发速度,他们只要对这个merge表做一些select count(*)操作,非常适合大项目总量约几亿的rows某一类型(如日志,调查统计)的业务表。
当然Innodb也不是绝对不用,用事务的项目就用Innodb的。另外,可能有人会说你MyISAM无法抗太多写操作,但是可以通过架构来弥补。
索引失效的情况?
1.索引不存储null值
更准确的说,单列索引不存储null值,复合索引不存储全为null的值。索引不能存储Null,所以对这列采用is null条件时,因为索引上根本没Null值,不能利用到索引,只能全表扫描。
为什么索引列不能存Null值?
将索引列值进行建树,其中必然涉及到诸多的比较操作。Null值的特殊性就在于参与的运算大多取值为null。
这样的话,null值实际上是不能参与进建索引的过程。也就是说,null值不会像其他取值一样出现在索引树的叶子节点上。
2.不适合键值较少的列(重复数据较多的列)
假如索引列TYPE有5个键值,如果有1万条数据,那么 WHERE TYPE = 1将访问表中的2000个数据块。再加上访问索引块,一共要访问大于200个的数据块。
如果全表扫描,假设10条数据一个数据块,那么只需访问1000个数据块,既然全表扫描访问的数据块
少一些,肯定就不会利用索引了。
3.前导模糊查询不能利用索引(like '%XX'或者like '%XX%')
假如有这样一列code的值为'AAA','AAB','BAA','BAB' ,如果where code like '%AB'条件,由于前面是模糊的,所以不能利用索引的顺序,必须一个个去找,看是否满足条件。这样会导致全索引扫描或者全表扫描。如果是这样的条件where code like 'A % ',就可以查找CODE中A开头的CODE的位置,当碰到B开头的数据时,就可以停止查找了,因为后面的数据一定不满足要求。这样就可以利用索引了。
4.索引失效的几种情况
- 如果条件中有or,即使其中有条件带索引也不会使用(这也是为什么尽量少用or的原因)
要想使用or,又想让索引生效,只能将or条件中的每个列都加上索引 - 对于多列索引,不是使用的第一部分,则不会使用索引
- like查询以%开头
- 如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不使用索引
- 如果mysql估计使用全表扫描要比使用索引快,则不使用索引
5.MySQL主要提供2种方式的索引:B-Tree索引,Hash索引
B树索引具有范围查找和前缀查找的能力,对于有N节点的B树,检索一条记录的复杂度为O(LogN)。相当于二分查找。
哈希索引只能做等于查找,但是无论多大的Hash表,查找复杂度都是O(1)。
显然,如果值的差异性大,并且以等值查找(=、 <、>、in)为主,Hash索引是更高效的选择,它有O(1)的查找复杂度。
如果值的差异性相对较差,并且以范围查找为主,B树是更好的选择,它支持范围查找。
非聚集索引查询的过程(二次查询)?
对于“性别”需要建索引吗?对于varchar怎么建索引?
不需要,重复数据太多,不使用索引反而更快(结束前两题内容)
varchar:索引的建立以定义的长度为准,需要建议前缀索引。在排序字段建立前缀索引,排序就不能在索引内完成了。
MyBatis动态SQL
JVM内存分区
Java虚拟机在程序执行过程会把jvm的内存分为若干个不同的数据区域来管理,这些区域有自己的用途,以及创建和销毁时间。
jvm管理的内存区域包括以下几个区域:
栈区:
栈分为java虚拟机栈和本地方法栈
重点是Java虚拟机栈,它是线程私有的,生命周期与线程相同。
每个方法执行都会创建一个栈帧,用于存放局部变量表,操作栈,动态链接,方法出口等。每个方法从被调用,直到被执行完。对应着一个栈帧在虚拟机中从入栈到出栈的过程。
通常说的栈就是指局部变量表部分,存放编译期间可知的8种基本数据类型,及对象引用和指令地址。局部变量表是在编译期间完成分配,当进入一个方法时,这个栈中的局部变量分配内存大小是确定的。
会有两种异常StackOverFlowError和 OutOfMemoneyError。当线程请求栈深度大于虚拟机所允许的深度就会抛出StackOverFlowError错误;虚拟机栈动态扩展,当扩展无法申请到足够的内存空间时候,抛出OutOfMemoneyError。
本地方法栈 为虚拟机使用到本地方法服务(native)
堆区:
堆被所有线程共享区域,在虚拟机启动时创建,唯一目的存放对象实例。
堆区是gc的主要区域,通常情况下分为两个区块年轻代和年老代。更细一点年轻代又分为Eden区最要放新创建对象,From survivor 和 To survivor 保存gc后幸存下的对象,默认情况下各自占比 8:1:1。
不过很多文章介绍分为3个区块,把方法区算着为永久代。这大概是基于Hotspot虚拟机划分, 然后比如IBM j9就不存在永久代概论。不管怎么分区,都是存放对象实例。
会有异常OutOfMemoneyError
方法区:
被所有线程共享区域,用于存放已被虚拟机加载的类信息,常量,静态变量等数据。被Java虚拟机描述为堆的一个逻辑部分。习惯是也叫它永久代(permanment generation)
垃圾回收很少光顾这个区域,不过也是需要回收的,主要针对常量池回收,类型卸载。
常量池用于存放编译期生成的各种字节码和符号引用,常量池具有一定的动态性,里面可以存放编译期生成的常量;运行期间的常量也可以添加进入常量池中,比如string的intern()方法。
程序计数器:
当前线程所执行的行号指示器。通过改变计数器的值来确定下一条指令,比如循环,分支,跳转,异常处理,线程恢复等都是依赖计数器来完成。
Java虚拟机多线程是通过线程轮流切换并分配处理器执行时间的方式实现的。为了线程切换能恢复到正确的位置,每条线程都需要一个独立的程序计数器,所以它是线程私有的。
唯一一块Java虚拟机没有规定任何OutofMemoryError的区块
jvm分区大致就这个块,具体里面还有很多细节,及其各个模块工作的算法都很复杂,这里只是对分区进行简单介绍,掌握一些基本的知识点。
GC可达性,哪些可以作为GCRoots,CMS收集器
可达性分析算法的思想:从一个被称为GC Roots的对象开始向下搜索,如果一个对象到GC Roots没有任何引用链相连时,则说明此对象不可用。
在java中可以作为GC Roots的对象有以下几种:
虚拟机栈中引用的对象、方法区类静态属性引用的对象、方法区常量池引用的对象、本地方法栈JNI引用的对象。
虽然这些算法可以判定一个对象是否能被回收,但是当满足上述条件时,一个对象 不一定会被回收。当一个对象不可达GC Roots时,这个对象并不会马上被回收,而是处于一个死缓的阶段,若要被真正的回收需要经历两次标记。如果对象在可达性分析中没有与GC Roots的引用链,那么此时就会被第一次标记并且进行一次筛选,筛选的条件是是否有必要执行finalize()方法。当对象没有覆盖finalize()方法或者已经被虚拟机调用过,那么就认为是没必要的。
如果该对象有必要执行finalize()方法,那么这个对象将会放在一个称为F-Queue的队列中,虚拟机会触发一个finalize()线程去执行,此线程是低优先级的,并且虚拟机不会承诺一直等待它运行完,这还是因为如果finalize()执行缓慢或者发生了死锁,那么就会造成F-Queue队列一直等待,造成了内存回收系统的崩溃。GC对处于F-Queue中的对象进行第二次被标记,这时,该对象将被移除“即将回收”集合,等待回收。
GC管理的主要区域是Java堆,一般情况下只针对堆进行垃圾回收。
方法区、栈和本地方法区不被GC所管理,因而选择这些区域内的对象作为GC roots,被GC roots引用的对象不被GC回收。
详细:
GC Root常说的GC(Garbage Collector) roots,特指的是垃圾收集器(Garbage Collector)的对象,GC会收集那些不是GC roots且没有被GC roots引用的对象。
一个对象可以属于多个root,GC root有几下种:
Class - 由系统类加载器(system class loader)加载的对象,这些类是不能够被回收的,他们可以以静态字段的方式保存持有其它对象。我们需要注意的一点就是,通过用户自定义的类加载器加载的类,除非相应的java.lang.Class实例以其它的某种(或多种)方式成为roots,否则它们并不是roots。
Thread - 活着的线程
Stack Local - Java方法的local变量或参数
JNI Local - JNI方法的local变量或参数
JNI Global - 全局JNI引用
Monitor Used - 用于同步的监控对象
Held by JVM - 用于JVM特殊目的由GC保留的对象,但实际上这个与JVM的实现是有关的。可能已知的一些类型是:系统类加载器、一些JVM知道的重要的异常类、一些用于处理异常的预分配对象以及一些自定义的类加载器等。然而,JVM并没有为这些对象提供其它的信息,因此需要去确定哪些是属于"JVM持有"的了。
了解CMS(Concurrent Mark-Sweep)垃圾回收器
-
特性:
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤:
初始标记(CMS initial mark)
初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。并发标记(CMS concurrent mark)
并发标记阶段就是进行GC Roots Tracing的过程。重新标记(CMS remark)
重新标记阶段是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,仍然需要“Stop The World”。并发清除(CMS concurrent sweep)
并发清除阶段会清除对象。
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
优点:
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿。缺点:
CMS收集器对CPU资源非常敏感
其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。
CMS默认启动的回收线程数是(CPU数量+3)/ 4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大。-
CMS收集器无法处理浮动垃圾
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。
也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。要是CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样停顿时间就很长了。 CMS收集器会产生大量空间碎片
CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。
二叉树两个节点最近公共祖先
代码实现题
两个链表找第一个交点
代码实现题
简单说就是两个链表分别入两个栈,若栈顶相等则存在到交点。此时同时出栈,若出栈的节点不等,则上一次出栈的节点为第一次相交节点。
synchronized实现,与ReentrantLock区别,锁的升级过程
深入研究 Java Synchronize 和 Lock 的区别与用法
Java并发编程:Synchronized及其实现原理
Java并发编程:Synchronized底层优化(轻量级锁、偏向锁)
Java锁性能提高(锁升级)机制总结
深入理解Java并发之synchronized实现原理
线程池有几种
Java并发编程:线程池的使用
Java 四种线程池的用法分析