聊聊kafka0.8的topic的partition以及topicCountMap

本文主要研究下kafka0.8版本api的topicCountMap与topic的partition的关系。

partition

物理上把topic分成一个或多个partition,每个partition在物理上对应一个文件夹,该文件夹下存储 这个partition的所有消息和索引文件。

partition与consumer

  • 如果consumer比partition多,是浪费,因为kafka的设计是在一个partition上是不允许并发的,所以consumer数不要大于partition数
  • 如果consumer比partition少,一个consumer会对应于多个partitions,这里主要合理分配consumer数和partition数,否则会导致partition里面的数据被取的不均匀.最好partiton数目是consumer数目的整数倍,所以partition数目很重要,比如取24,就很容易设定consumer数目
  • 如果consumer从多个partition读到数据,不保证数据间的顺序性,kafka只保证在一个partition上数据是有序的,但多个partition,根据你读的顺序会有不同

kafka producer发送消息的时候,如果有key的话,根据key进行hash,然后分发到指定的partition;如果没有key则按counter进行partition。

rebalance

如果增减consumer,broker,partition会导致rebalance,rebalance后consumer对应的partition会发生变化。

比如减少一个consumer,然后rebalance之后,consumer对应的partition会进行重新调整映射。

topicCountMap

告诉Kafka我们在Consumer中将用多少个线程来消费该topic。topicCountMap的key是topic name,value针对该topic是线程的数量。

假设有个topic,有6个partiton,然后启动了两个consumer,每个consumer的topicCount为3,则观察会发现,每个consumer的消费线程都在运行;
如果每个consumer的topicCount变为4,则会发现,先启动的consmer中4个线程都在运行,而后启动的consumer中只有2个线程在运行,其他2个被阻塞住了。

也就是说,对于consumer来说,实际的消费个数=consumer实例个数每个consumer的topicCount个数,如果这个值>partition,则会造成某些消费线程多余,阻塞住。
如果这个值<=partition,则所有消费线程都在消费。
因此实际分布式部署consumer的时候,其consumer实例个数
每个consumer的topicCount个数<=topic的partition值。

代码实例

  • 创建topic
sh kafka-topics.sh --create --topic topic20170921 --replication-factor 1 --partitions 6 --zookeeper localhost:2181
  • 查看consumer group
sh kafka-run-class.sh kafka.tools.ConsumerOffsetChecker --zookeeper localhost:2181 --group test-group-0921
  • consumer
public class NativeConsumer {

    ExecutorService pool = Executors.newFixedThreadPool(10);

    public void exec(String topic,String zk,int consumerCount,String group) throws UnsupportedEncodingException {
        Properties props = new Properties();
        props.put("zookeeper.connect", zk);
//        props.put("auto.offset.reset","smallest");
        props.put("group.id",group);
        props.put("zookeeper.session.timeout.ms", "10000");
        props.put("zookeeper.sync.time.ms", "2000");
        props.put("auto.commit.interval.ms", "10000");
        props.put(org.apache.kafka.clients.consumer.ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY, "range");
        ConsumerConfig consumerConfig =  new kafka.consumer.ConsumerConfig(props);
        ConsumerConnector consumerConnector = kafka.consumer.Consumer.createJavaConsumerConnector(consumerConfig);
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, consumerCount);
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumerConnector
                .createMessageStreams(topicCountMap);
        consumerMap.get(topic).stream().forEach(stream -> {

            pool.submit(new Runnable() {
                @Override
                public void run() {
                    ConsumerIterator<byte[], byte[]> it = stream.iterator();
                    while (it.hasNext()) {
                        System.out.println(Thread.currentThread().getName()+":"+new String(it.next().message()));
                    }
                }
            });

        });
    }
}
  • producer
public class NativeProducer {

    public void produce(String topic,String brokerAddr) throws ExecutionException, InterruptedException {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,brokerAddr);
        props.put(ProducerConfig.CLIENT_ID_CONFIG, "DemoProducer");
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArraySerializer");
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArraySerializer");

        try (KafkaProducer<byte[], byte[]> producer = new KafkaProducer<>(props)) {
            int totalCountOfSendedMessages = 0;
            long totalSendTime = 0;

            long timeOfLastUpdate = 0;
            int countOfMessagesInSec = 0;

            for(int i=0;i<1000000;i++){
                //todo key不能相同,否则都发送到同一个partition了,消费者无法scale out
                byte[] dataKey = SerializationUtils.serialize(UUID.randomUUID().toString());
                byte[] dataValue = SerializationUtils.serialize(UUID.randomUUID().toString());

                ProducerRecord<byte[], byte[]> producerRecord = new ProducerRecord<>(
                        topic,
                        dataKey,
                        dataValue
                );

                long sendingStartTime = System.currentTimeMillis();
                // Sync send
                producer.send(producerRecord).get();
                Thread.sleep(100);
                long currentTime = System.currentTimeMillis();

                long sendTime = currentTime - sendingStartTime;

                totalSendTime += sendTime;

                totalCountOfSendedMessages++;
                countOfMessagesInSec++;
                if (currentTime - timeOfLastUpdate > TimeUnit.SECONDS.toMillis(1)) {
                    System.out.println("Average send time: " +
                            (double) (totalSendTime / totalCountOfSendedMessages) + " ms.");
                    System.out.println("Count of messages in second: " + countOfMessagesInSec);

                    timeOfLastUpdate = currentTime;
                    countOfMessagesInSec = 0;
                }
            }

        }
    }
}
  • test
    String zkAddr = "localhost:2181";
    String topic = "topic20170921"; //partition 6
    String brokerAddr = "localhost:9092";
    String group = "test-group-0921";

    @Test
    public void testConsumer1() throws InterruptedException {
        NativeConsumer nativeConsumer = new NativeConsumer();
        try {
            nativeConsumer.exec(topic,zkAddr,4,group);
        } catch (UnsupportedEncodingException e1) {
            e1.printStackTrace();
        }
        Thread.sleep(100000);
    }

    @Test
    public void testConsumer2() throws InterruptedException {
        NativeConsumer nativeConsumer = new NativeConsumer();
        try {
            nativeConsumer.exec(topic,zkAddr,4,group);
        } catch (UnsupportedEncodingException e1) {
            e1.printStackTrace();
        }
        Thread.sleep(100000);
    }

    @Test
    public void testProducer() throws UnsupportedEncodingException, InterruptedException {
        NativeProducer producer = new NativeProducer();
        try {
            producer.produce(topic,brokerAddr);
        } catch (ExecutionException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

doc

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容