1.Why Apache Spark?

Why Apache Spark?


1 Why Apache Spark
2 关于Apache Spark
3 如何安装Apache Spark
4 Apache Spark的工作原理
5 spark弹性分布式数据集
6 RDD持久性
7 spark共享变量
8 Spark SQL
9 Spark Streaming

原文链接:http://blogxinxiucan.sh1.newtouch.com/2017/07/23/Why-Apache-Spark/

我们生活在“大数据”的时代,其中以各种类型的数据以前所未有的速度生成数据,而这种速度似乎只是在天文学上加速。该数据可以广泛地分类为交易数据,社交媒体内容(例如文本,图像,音频和视频)以及来自仪器化设备的传感器馈送。

但是人们可能会问为什么要重视这一点。原因是:“数据是有价值的,因为它可以做出决定”。

直到几年前,只有少数有技术和资金的公司投资存储和挖掘大量数据才能获得宝贵的见解。不过,雅虎在2009年开放Apache Hadoop的时候,一切都发生了变化。这是一个破坏性的变化,大大降低了大数据处理的水平。因此,许多行业,如医疗保健,基础设施,金融,保险,远程信息处理,消费者,零售,营销,电子商务,媒体,制造和娱乐等行业已经大大受益于Hadoop上的实际应用。

Apache Hadoop提供两个主要功能:

  • HDFS是使用水平可扩展的商品硬件廉价地存储大量数据的容错方式。
  • Map-Reduce,为挖掘数据提供编程结构并获得洞察力。

下面的图1说明了如何通过一系列Map-Reduce步骤处理数据,其中Map-Reduce步骤的输出在典型的Hadoop作业中输入到下一个。

中间结果存储在磁盘上,这意味着大多数Map-Reduce作业都是I / O绑定的,而不是计算上的约束。对于诸如ETL,数据整合和清理等用例,处理时间并不是很大的问题,但是处理时间很重要的其他类型的大数据用例也不是问题。这些用例如下:

  1. 流数据处理进行近实时分析。例如,点击流数据分析来制作视频推荐,这增强了用户参与度。我们必须在准确性和处理时间之间进行权衡。
  2. 大型数据集的交互式查询,因此数据科学家可以对数据集进行自组织查询。

下图2显示了Hadoop如何发展成为几种技术的生态系统,为这些用例提供了非常专门的工具。

虽然我们喜欢Hadoop生态系统中的工具之间的丰富选择,但是使用生态系统繁琐的挑战有几个:

  1. 需要一种不同的技术方案来解决每种类型的用例,因为一些解决方案在不同的用例中不可重用。
  2. 生产力需要熟练掌握多项技术
  3. 某些技术面临版本兼容性问题
  4. 它不适合并行作业中更快的数据共享需求。

这些是Apache Spark解决的挑战!Spark是闪电式快速内存集群计算平台,具有统一的解决方案,解决了批处理,流式传输和交互式用例,如图3所示。


公众号:it全能程序猿


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容