雾计算并非是些性能强大的服务器,而是由性能较弱、更为分散的各种功能计算机组成,雾计算是介于云计算和个人计算之间的,是半虚拟化的服务计算架构模型,强调数量,不管单个计算节点能力多么弱都要发挥作用。与云计算相比,雾计算所采用的架构更呈分布式,更接近网络边缘。雾计算将数据、数据处理和应用程序集中在网络边缘的设备中,而不像云计算那样将它们几乎全部保存在云中,数据的存储及处理更依赖本地设备,而非服务器。雾计算是新一代分布式计算,符合互联网的“去中心化”特征。自从思科提出了雾计算,已经有ARM、戴尔、英特尔、微软等几大科技公司以及普林斯顿大学加入了这个概念阵营,并成立了非盈利性组织开放雾联盟,旨在推广和加快开放雾计算的普及,促进物联网发展。雾计算是以个人云,私有云,企业云等小型云为主。
一般而言,雾计算和边缘计算的区别在于,雾计算更具有层次性和平坦的架构,其中几个层次形成网络,而边缘计算依赖于不构成网络的单独节点。雾计算在节点之间具有广泛的对等互连能力,边缘计算在孤岛中运行其节点,需要通过云实现对等流量传输。
那么,边缘计算和云计算又有何区别?这两者都是处理大数据的计算运行方式。但不同的是,这一次,数据不用再传到遥远的云端,在边缘侧就能解决,更适合实时的数据分析和智能化处理,也更加高效而且安全。
异构计算需求在析取计算任务并行性类型基础上,将具有相同类型的代码段划分到同一子任务中,然后根据不同并行性类型将各子任务分配到最适合执行它的计算资源上加以执行,达到使计算任务总的执行时间为最小。
雾计算是一种面向物联网的分布式计算基础设施,可将计算能力和数据分析应用扩展至网络“边缘”,它使客户能够在本地分析和管理数据,从而通过联接获得即时的见解。