就数据分析学习而言,需要的技能模块有统计基础+数据库知识+编程能力。其以后的的职业发展方向,一个是业务层面的方向,一个是数据挖掘层面的方向。今天科多大数据和你们一起来谈谈关于数据分析的学习。
1.统计基础
理工科的学生在本科阶段学习过概率论与数理统计,单从做数据分析的角度已经够用。其他方面,可以根据需要查看相关书籍,随时进行查漏补缺即可。个人推荐《深入浅出统计学》,可以让统计理论的学习有趣又自然。
2.数据库知识
关系型数据库很重要。在学习数据分析的初期甚至很长一段时间,你接触到的数据都存储在关系型数据库中,需要学习SQL语言进行数据查询。关于SQL语言,强力推荐《SQL必知必会》,整本书通俗易懂,是学习SQL语言的不二之选。
学习数据库的本质就是在学习一种与数据打交道的逻辑思维与能力。编程中的很多思想都和关系型数据库、SQL相通,比如:SQL中对data进行group by的操作,这个在Excel里类似于透视表,在Python/R中也有相应的group function去处理数据。甚至在以后的进阶过程,你会接触到分布式数据库和所对应的no-SQL语句。
3.编程能力
Excel。 透视表(Pivot Table)是做数据分析的必备技能。透视表可以帮你迅速汇总数据,看到各类型数据的直观特征就像是让你站在更高的视角看待数据。作为进阶,Excel自带的函数、各种插件,以及VBA也是很好的工具。
Python。当数据量大到用Excel打开都要很久或者我们想进步提升能力时,需要学些hardcore技能,即用编程语言做数据分析。这里主要有R和Python两大流派。个人推荐Python,一是代码简单易懂,容易上手;二是学习资料多,降低学习成本。推荐《利用Python进行数据分析》,涵盖了利用Python做数据清洗,数据可视化及分析的技能点,可以作为一本工具书随时查阅。
Python 是目前科多大数据分析课程里面非常重要的一项内容,下面这张图更能直观反映学习内容
当然需要特别指出,数据分析课程学习内容肯定不止python这一项内容,还包括数据分析基础,互联网电子商务、经济学基础,数据产品(可视化报表)等各个板块的学习。