概述
Handler机制主要由Handler、MessageQueue、Looper三个类实现。Handler把Message放进MessageQueue里,Looper循环读取MessageQueue中的消息,然后交由消息的target处理,也就是交由Handler处理。由于在Thread A中调用sendMessage()方法,Looper在Thread B中运行处理消息,因此能实现线程的切换。
MessageQueue
MessageQueue的作用是存储消息,虽然名称带有Queue,但实际数据结构是一个单链表,这是由于MessageQueue并不完全是先进先出的原则,需要插入和删除操作,因此适用单链表结构。
MessageQueue主要有插入和读取并删除两个操作。插入数据对应的方法是enqueueMessage(),读取对应的方法是next()。
enqueueMessage方法源码如下:
boolean enqueueMessage(Message msg, long when) {
...
synchronized (this) {
...
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
根据源码可以发现,enqueueMessage基本上是根据when属性做链表的插入操作。
next方法源码:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
next方法中读取消息大概逻辑为,如果有Message,并且已经到了Message的设定的处理时间,则返回该Message。否则更新nextPollTimeoutMillis变量记录等待时间,并判断是否有空闲消息,如果有空闲消息则进行处理,然后重新读取消息。如果没有空闲消息,就在nativePollOnce(ptr, nextPollTimeoutMillis)阻塞住,等待下一个消息。
Looper
Looper主要职责是不停的循环读取MessageQueue中的消息,然后交由Handler进行处理。对应的方法是loop()。
loop()源码如下:
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
...
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
...
msg.target.dispatchMessage(msg);
...
msg.recycleUnchecked();
}
}
Looper无限循环读取消息,即使不再使用,也会阻塞着等待新消息,当前线程就无法结束,因此需要退出Looper的循环。
根据源码可以看到MessageQueue的next()方法返回null的时候会return。而在MessageQueue中的next()方法中可以看到mQuitting为true的时候返回null。搜索MessageQueue的源码发现通过quit(boolean safe)方法退出。
if (mQuitting) {
dispose();
return null;
}
Handler
Handler主要职责是发送消息和处理消息。
发送消息:
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
Handler类发送消息的方法有很多,都是调用sendMessageDelayed()方法,最后调用enqueueMessage(),可以发现发送消息其实只是把消息放进MessageQueue。
这里设置了msg.target = this,在Looper取出消息的时候,就是交由target处理。以此来保证发出的消息由同一个Handler进行处理。
处理消息:
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
消息处理逻辑如下:
-
如果msg的callback不为null,则调用msg.callback.run()。这主要处理Handler的post(Runnable r)方法发送过来的Runnable。处理方法如下:
private static void handleCallback(Message message) { message.callback.run(); }
如果mCallback不为null,就交给mCallback的handleCallback方法进行处理。
如果mCallback为null或者mCallback的handleCallback方法返回false,则直接交给Handler的handleMessage()方法处理。
相关问题
-
在子线程new Handler的时候会出现bug如下:
java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare() at android.os.Handler.<init>(Handler.java:203)
从源码中找问题,Handler最终构造方法如下:
public Handler(Callback callback, boolean async) { ... mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
当该线程不存在Looper对象时,会抛出这个异常。因此在初始化Handler之前,需要通过Looper.prepare()初始化Looper对象。并调用loop()方法开始循环读取Message。如下:
Looper.prepare(); Handler handler = new Handler(); Looper.loop();
但是在主线程并不需要这么麻烦,是因为在主线程的main方法中,已经初始化了Looper对象。
public static void main(String[] args) { ... Looper.prepareMainLooper(); ActivityThread thread = new ActivityThread(); thread.attach(false); if (sMainThreadHandler == null) { sMainThreadHandler = thread.getHandler(); } ... Looper.loop(); throw new RuntimeException("Main thread loop unexpectedly exited"); }
难道子线程使用Handler就活该这么麻烦吗?也不是,Android提供了HandlerThread类,封装了Looper相关操作,十分方便。
-
在解决上个问题的时候,我们知道在主线程的main方法中调用了Looper.loop(),而loop()是无限循环的,那不是阻塞主线程了吗?
这里确实阻塞住了,可以看到如果loop()方法执行完,就会抛出运行时异常,然后程序就运行完了。
通过getHandler()方法找到对应的Handler,即H。
public void handleMessage(Message msg) { if (DEBUG_MESSAGES) Slog.v(TAG, ">>> handling: " + codeToString(msg.what)); switch (msg.what) { case LAUNCH_ACTIVITY: { Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityStart"); final ActivityClientRecord r = (ActivityClientRecord) msg.obj; r.packageInfo = getPackageInfoNoCheck( r.activityInfo.applicationInfo, r.compatInfo); handleLaunchActivity(r, null, "LAUNCH_ACTIVITY"); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); } break; case RELAUNCH_ACTIVITY: { Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityRestart"); ActivityClientRecord r = (ActivityClientRecord)msg.obj; handleRelaunchActivity(r); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); } break; case PAUSE_ACTIVITY: { Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "activityPause"); SomeArgs args = (SomeArgs) msg.obj; handlePauseActivity((IBinder) args.arg1, false, (args.argi1 & USER_LEAVING) != 0, args.argi2, (args.argi1 & DONT_REPORT) != 0, args.argi3); maybeSnapshot(); Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER); } break; ...
通过H的case可以发现,Android的事件比如Activity的生命周期、广播、内存低等各个事件都在。主线程的运行就是处理各个消息,没有消息的时候会阻塞,但是不会ANR。造成ANR的原因一般当前事件没有及时得到处理。而阻塞状态下,新消息到达,就会唤醒主线程进行处理。
同时,由于主线程阻塞,会释放CPU资源进入休眠状态,并不会消耗大量CPU资源。