Zeppelin交互式分析/分析的可视化/


基于hadoop生态圈的数据仓库实践 —— OLAP与数据可视化(五) - wzy0623的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/wzy0623/article/details/52370045
当前的Zeppelin已经支持很多翻译器,如Zeppelin 0.6.0版本自带的翻译器有alluxio、cassandra、file、hbase、ignite、kylin、md、phoenix、sh、tajo、angular、elasticsearch、flink、hive、jdbc、lens、psql、spark等18种之多。插件式架构允许用户在Zeppelin中使用自己熟悉的特定程序语言或数据处理方式。例如,通过使用%spark翻译器,可以在Zeppelin中使用Scala语言代码。
在数据可视化方面,Zeppelin已经包含一些基本的图表,如柱状图、饼图、线形图、散点图等,任何后端语言的输出都可以被图形化表示。
用户建立的每一个查询叫做一个note,note的URL在多用户间共享,Zeppelin将向所有用户实时广播note的变化。Zeppelin还提供一个只显示查询结果的URL,该页不包括任何菜单和按钮。用这种方式可以方便地将结果页作为一帧嵌入到自己的web站点中。

//5. Hue与Zeppelin比较
Zeppelin只提供了单一的数据处理功能,包括前面提到的数据摄取、数据发现、数据分析、数据可视化等都属于数据处理的范畴。而Hue的功能相对丰富的多,除了类似的数据处理,还有元数据管理、Oozie工作流管理、作业管理、用户管理、Sqoop集成等很多管理功能。从这点看,Zeppelin只是一个数据处理工具,而Hue更像是一个综合管理工具。

(3)使用场景Zeppelin适合单一数据处理、但后端处理语言繁多的场景,尤其适合Spark。
Hue适合与Hadoop集群的多个组件交互、如Oozie工作流、Sqoop等联合处理数据的场景,尤其适合与Impala协同工作。


Spark交互式分析平台Apache Zeppelin的安装 - Jason Ding的专栏 - 博客频道 - CSDN.NET
http://blog.csdn.net/jasonding1354/article/details/46822391

Zeppelin介绍
Apache Zeppelin提供了web版的类似ipython的notebook,用于做数据分析和可视化。背后可以接入不同的数据处理引擎,包括spark, hive, tajo等,原生支持scala, java, shell, markdown等。它的整体展现和使用形式和Databricks Cloud是一样的,就是来自于当时的demo。
Zeppelin可实现你所需要的: - 数据采集 - 数据发现 - 数据分析 - 数据可视化和协作
支持多种语言,默认是scala(背后是spark shell),SparkSQL, Markdown 和 Shell。

甚至可以添加自己的语言支持。如何写一个zeppelin解释器
Zeppelin特性
Apache Spark 集成
Zeppelin 提供了内置的 Apache Spark 集成。你不需要单独构建一个模块、插件或者库。 Zeppelin的Spark集成提供了: - 自动引入SparkContext 和 SQLContext - 从本地文件系统或maven库载入运行时依赖的jar包。更多关于依赖载入器 - 可取消job 和 展示job进度
数据可视化
一些基本的图表已经包含在Zeppelin中。可视化并不只限于SparkSQL查询,后端的任何语言的输出都可以被识别并可视化。 Bank

动态表格 Zeppelin 可以在你的笔记本中动态地创建一些输入格式。

协作 Notebook 的 URL 可以在协作者间分享。 Zeppelin 然后可以实时广播任何变化,就像在 Google docs 中一样。

发布 Zeppelin提供了一个URL用来仅仅展示结果,那个页面不包括Zeppelin的菜单和按钮。这样,你可以轻易地将其作为一个iframe集成到你的网站。


使用Zeppelin来实现大数据分析的可视化 - 萌新大数据 - SegmentFault
https://segmentfault.com/a/1190000005673104

--

Hadoop - Zeppelin 使用心得-Hadoop-@大数据资讯
http://www.thebigdata.cn/Hadoop/28985.html


Spark大型项目实战:电商用户行为分析大数据平台(高端大数据项目实战课程)_北风网
http://www.ibeifeng.com/goods-582.html

Paste_Image.png

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容