Google AI提出MLP-Mixer:只需MLP就在ImageNet达到SOTA!

机器学习算法工程师

一个用心的账号

关注我,带你一起学习算法知识!


近日,Google AI又发布了一篇与ViT一样的重磅级论文:MLP-Mixer: An all-MLP Architecture for Vision。这篇论文提出的Mixer模型仅包含最简单的MLP结构就能在ImageNet上达到SOTA。那么MLP其实是两层FC层,这不禁让人感叹:

FC is all you need, neither Conv nor Attention!

在数据和资源足够的情况下,或许inductive bias的模型反而成了束缚,还不如最simple的模型来的直接。下面结果图就可以说明一切:当训练数据量较少时,性能BiT>ViT>Mixer,但是随着数据量的增加,三者性能基本相差无几。

从网络架构来看,MLP-Mixer和ViT非常类似:

  • 预处理都是将图像分成patchs,通过linear projection得到一系列patch embeddings;

  • 网络主体都是isotropic design,即由N个连续且相同的layers来组成。

  • 差别主要体现在layers的不同,ViT采用的是transformer layer,而MLP-Mixer采用的是mixer-layer,mixer-layer很简单,只包括两个MLP(还有skip connection):

    对于图像,大部分的网络无非是从两个方面mix features:

    (i) at a given spatial location,

    (ii) between different spatial locations,

    比如卷积其实是同时进行(i)和(ii),特别地1x1卷积只完成(i),single-channel depth-wise conv 只完成(ii);而transformer layer比较复杂,projection layer实现的是(i),self-attention实现的是(ii)(实际上也会涉及(i)),FFN实现的是(i)。而对于mixer-layer,其实就完全分离两个部分了,token-mixing MLP block实现的是(ii),channel-mixing MLP block实现的是(i),这也算是设计上的一个巧妙解释吧。

    由于channel mixing MLP是permutation-variant,对tokens的顺序是敏感的,这和ViT不同,因为self-attention是permutation-invariant的。因次Mixer不需要e positionembedding。不过由于token-mixing MLP block的存在,这也意味着网络只能接受固定size的图像输入,毕竟这里MLP的参数依赖于tokens的数量,这对于dense prediction任务来说,可能有点麻烦,因为检测和分割的基本都是变输入。

    Mixer的网络参数设计和ViT较为类似,具体如下:

    Mixer在不同的数据集上pre-training后迁移到其它任务时,其性能与ViT等其它模型对比如下,可以看到Mixer均可以接近SOTA,而且模型inference time也基本类似。

    但是这都是需要在比较大的数据集比如ImageNet-21K和JFT-300上进行pre-training,当Mixer训练数据不足时,Mixer容易过拟合,其效果要差于CNN和ViT,下表是不同设置的Mixer与其他模型的对比,比如在ImageNet上训练的话,Mixer-B/16性能就低于ViT-B/16。

    关于Mixer,有人觉得它其实是包含卷积的,比如LeCun大佬就发声了:1st layer "Per-patch fully-connected" == "conv layer with 16x16 kernels and 16x16 stride" , other layers "MLP-Mixer" == "conv layer with 1x1 kernels"。其实这个是从实现的角度来看这个的,但是只有1x1的卷积层还能算的上是CNN吗?其实论文也从另外一个角度说明了Mixer和CNN的联系:channel mixing MLP等价于1x1卷积,token-mixing MLP 等价于一个kernel size为image size的single-channel depth-wise convolutions,但是这里parametersharing for token mixing(这里就是, separable convolution,但是conv一般不同的channel会采用不同卷积核,而token-mixing MLP是所有channel的参数都是共享的)。

    无独有偶,随后牛津大学也发布了一篇简单的论文:Do You Even Need Attention? A Stack of Feed-Forward Layers DoesSurprisingly Well on ImageNet,其提出的模型结构其实是和Mixer一样,只不过论文里用FFN,而不是MLP,而且实验没有Google的充分:

    论文里面也有一小段对这种网络的描述,其实和我们上述所述基本一致:

    不论是ViT,或者CNN-ResNet,还是这里的MLP-Mixer,其实最本质的一点,就是它们都是residual net,或许这才是最重要的。

    最后不得不说,Google可能又开了一个新坑,可能滋养一大批paper,参考ViT。

    推荐阅读

    CPVT:一个卷积就可以隐式编码位置信息

    DETR:基于 Transformers 的目标检测

    MoCo V3:我并不是你想的那样!

    Transformer在语义分割上的应用

    "未来"的经典之作ViT:transformer is all you need!

    PVT:可用于密集任务backbone的金字塔视觉transformer!

    涨点神器FixRes:两次超越ImageNet数据集上的SOTA

    Transformer为何能闯入CV界秒杀CNN?

    不妨试试MoCo,来替换ImageNet上pretrain模型!

    ©著作权归作者所有,转载或内容合作请联系作者
    • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
      沈念sama阅读 212,080评论 6 493
    • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
      沈念sama阅读 90,422评论 3 385
    • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
      开封第一讲书人阅读 157,630评论 0 348
    • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
      开封第一讲书人阅读 56,554评论 1 284
    • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
      茶点故事阅读 65,662评论 6 386
    • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
      开封第一讲书人阅读 49,856评论 1 290
    • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
      沈念sama阅读 39,014评论 3 408
    • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
      开封第一讲书人阅读 37,752评论 0 268
    • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
      沈念sama阅读 44,212评论 1 303
    • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
      茶点故事阅读 36,541评论 2 327
    • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
      茶点故事阅读 38,687评论 1 341
    • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
      沈念sama阅读 34,347评论 4 331
    • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
      茶点故事阅读 39,973评论 3 315
    • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
      开封第一讲书人阅读 30,777评论 0 21
    • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
      开封第一讲书人阅读 32,006评论 1 266
    • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
      沈念sama阅读 46,406评论 2 360
    • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
      茶点故事阅读 43,576评论 2 349

    推荐阅读更多精彩内容