大数据平台技术栈

技术栈全貌

大数据平台技术栈

下面自底向上介绍各个层的主要项目。

1 采集层和传输层

采集层

在hadoop和关系型数据库之间转换数据。

Flume是一个分布式的高可用的数据收集、聚集和移动的工具。通常用于从其他系统搜集数据,如web服务器产生的日志,通过Flume将日志写入到Hadoop的HDFS中。

Flume

数据抽取是 ETL 流程的第一步。我们会将数据从 RDBMS 或日志服务器等外部系统抽取至数据仓库,进行清洗、转换、聚合等操作。在现代网站技术栈中,MySQL 是最常见的数据库管理系统,我们会从多个不同的 MySQL 实例中抽取数据,存入一个中心节点,或直接进入 Hive。市面上已有多种成熟的、基于 SQL 查询的抽取软件,如著名的开源项目 Apache Sqoop,然而这些工具并不支持实时的数据抽取。MySQL Binlog 则是一种实时的数据流,用于主从节点之间的数据复制,我们可以利用它来进行数据抽取。借助阿里巴巴开源的 Canal 项目,我们能够非常便捷地将 MySQL 中的数据抽取到任意目标存储中。

Canal

Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的 “存储库” 中。

消息队列,一个分布式流平台。

阿里巴巴开源的消息队列。

2 存储层

存储层

HBase is the Hadoop database, a distributed, scalable, big data store.

  • Alluxio/Redis/Ignite

Alluxio以内存为中心分布式存储系统,从下图可以看出, Alluxio主要有两大功能,第一提供一个文件系统层的抽象,统一文件系统接口,桥接储存系统和计算框架;第二通过内存实现对远程数据的加速访问。详情参考Alluxio document

Alluxio

Redis是一个开源的内存键值数据库,相比于Memcache,支持丰富的数据结构。
Ignit是一个以内存为中心的分布式数据库,缓存和处理平台,用于事务,分析和流式工作负载,在PB级别的数据上提供接近内存速度访问数据。

从上述分析可知,Alluxio/Redis/Ignite主要都是通过内存来实现加速。

TiDB是有PingCap开源的分布式NewSQL关系型数据库。NewSQL数据库有两个流派,分别是以Google为代表的Spanner/F1和以Amazon 为代表的Aurora(极光),目前国内做NewSQL数据库主要是参考Google的Spanner架构,Google Spanner也是未来NewSQL的发展趋势。具体请查阅相关资料,或者访问Youtube,观看黄旭东的分享。

Hadoop的分布式文件系统。

Linux中备受关注的开源分布式存储系统,除了GlusterFS,当属Ceph。目前Ceph已经成为RedHat旗下重要的分布式存储产品,并继续开源。Ceph提供了块储存RDB、分布式文件储存Ceph FS、以及分布式对象存储Radosgw三大储存功能,是目前为数不多的集各种存储能力于一身的开源存储中间件。

Kudu是cloudera开源的运行在hadoop平台上的列式存储系统,拥有Hadoop生态系统应用的常见技术特性,运行在一般的商用硬件上,支持水平扩展,高可用,目前是Apache Hadoop生态圈的新成员之一(incubating)。

Kudu的设计与众不同,它定位于应对快速变化数据的快速分析型数据仓库,希望靠系统自身能力,支撑起同时需要高吞吐率的顺序和随机读写的应用场景,提供一个介于HDFS和HBase的性能特点之间的一个系统,在随机读写和批量扫描之间找到一个平衡点,并保障稳定可预测的响应延迟。可与MapReduce, Spark和其它hadoop生态系统集成。

3 计算层

计算层

Facebook 开源。Hive是一个构建在Hadoop上的数据仓库框架。Hive的设计目标是让精通SQL技能但Java编程技能相对较弱的分析师能对存放在Hadoop上的大规数据执行查询。
Hive的查询语言HiveQL是基于SQL的。任何熟悉SQL的人都可以轻松使用HiveSQL写查询。和RDBMS相同,Hive要求所有数据必须存储在表中,而表必须有模式(Schema),且模式由Hive进行管理。

类似Hive的同类产品:kylin druid SparkSQL Impala

KylinApache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc. 开发并贡献至开源社区。它能在亚秒内查询巨大的Hive表。
Druid 为监控而生的数据库连接池。
SparkSQL,Spark SQL is Apache Spark's module for working with structured data.
Impala,Impala是Apache Hadoop的开源,本地分析数据库。 它由Cloudera,MapR,Oracle和Amazon等供应商提供。

  • Spark
    Spark是一个分布式计算框架。

  • Storm
    Storm是一个分布式的、高容错的实时计算系统。Storm对于实时计算的的意义相当于Hadoop对于批处理的意义。Hadoop为我们提供了Map和Reduce原语,使我们对数据进行批处理变的非常的简单和优美。同样,Storm也对数据的实时计算提供了简单Spout和Bolt原语。
    Storm适用的场景:①、流数据处理:Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。②、分布式RPC:由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。

  • Flink

Apache Flink is a framework and distributed processing engine for stateful computations over unbounded and bounded data streams. Flink has been designed to run in all common cluster environments, perform computations at in-memory speed and at any scale.

TensorFlow™ is an open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices. Originally developed by researchers and engineers from the Google Brain team within Google’s AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains.

  • 分布式资源调度
    YARN, Apache YARN(Yet Another Resource Negotiator)是hadoop的集群资源管理系统。YARN在Hadoop2时被引入,最初是为了改善MapReduce的实现,但它具有足够的通用性,也支持其他的分布式计算模式。

  • Mesos
    Mesos 最初由 UC Berkeley 的 AMP 实验室于 2009 年发起,遵循 Apache 协议,目前已经成立了 Mesosphere 公司进行运营。Mesos 可以将整个数据中心的资源(包括 CPU、内存、存储、网络等)进行抽象和调度,使得多个应用同时运行在集群中分享资源,并无需关心资源的物理分布情况。
    如果把数据中心中的集群资源看做一台服务器,那么 Mesos 要做的事情,其实就是今天操作系统内核的职责:抽象资源 + 调度任务。Mesos 项目是 Mesosphere 公司 Datacenter Operating System (DCOS) 产品的核心部件。

  • Kubernetes
    Kubernetes是Google 2014年推出的开源容器集群管理系统,基于Docker构建一个容器调度服务,为容器化的应用提供资源调度、部署运行、均衡容灾、服务注册、扩容缩容等功能。

  • Presto
    Presto是FaceBook开源的一个开源项目。Presto被设计为数据仓库和数据分析产品:数据分析、大规模数据聚集和生成报表。这些工作经常通常被认为是线上分析处理操作。
    Presto通过使用分布式查询,可以快速高效的完成海量数据的查询。如果你需要处理TB或者PB级别的数据,那么你可能更希望借助于Hadoop和HDFS来完成这些数据的处理。作为Hive和Pig(Hive和Pig都是通过MapReduce的管道流来完成HDFS数据的查询)的替代者,Presto不仅可以访问HDFS,也可以操作不同的数据源,包括:RDBMS和其他的数据源(例如:Cassandra)。

  • 其他(区块链框架)

    • Etherenum, 以太坊
    • HyperLedger,超级账本

4 工具层和服务层

工具层和服务层
  • Zeppelin
    Web-based notebook that enables data-driven,
    interactive data analytics and collaborative documents with SQL, Scala and more.

  • Kylin
    Apache Kylin™是一个开源的分布式分析引擎,提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBay Inc. 开发并贡献至开源社区。它能在亚秒内查询巨大的Hive表。

    kylin

  • Jupyter

The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.

参考

  • 《Hadoop权威指南》
  • 《架构解密-从分布式到微服务》
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容