使用不同R包获取TCGA的DEGs

### Create: Jianming Zeng
### Date: 2019-04-02 21:59:01
### Email: jmzeng1314@163.com

rm(list=ls())
options(stringsAsFactors = F)

Rdata_dir='../Rdata/'
Figure_dir='../figures/'
# 加载上一步从RTCGA.miRNASeq包里面提取miRNA表达矩阵和对应的样本临床信息。 
# 见   https://www.jianshu.com/p/a5f687d2e7b7
load( file = 
        file.path(Rdata_dir,'TCGA-KIRC-miRNA-example.Rdata')
)
dim(expr)
dim(meta)
# 可以看到是 537个病人,但是有593个样本,每个样本有 552个miRNA信息。
# 当然,这个数据集可以下载原始测序数据进行重新比对,可以拿到更多的miRNA信息

# 这里需要解析TCGA数据库的ID规律,来判断样本归类问题。
group_list=ifelse(as.numeric(substr(colnames(expr),14,15)) < 10,'tumor','normal')  ##经验

table(group_list)  #71个normal,522个tumor
exprSet=na.omit(expr)
source('../functions.R')

DESeq2包、edgeR包和limma包均可获取DEGs,下面依次展示

### Firstly run DESeq2 

if(T){
  library(DESeq2)
  
  (colData <- data.frame(row.names=colnames(exprSet), 
                         group_list=group_list) )
  dds <- DESeqDataSetFromMatrix(countData = exprSet,
                                colData = colData,
                                design = ~ group_list)
  tmp_f=file.path(Rdata_dir,'TCGA-KIRC-miRNA-DESeq2-dds.Rdata')
  if(!file.exists(tmp_f)){
    dds <- DESeq(dds)
    save(dds,file = tmp_f)
  }
  load(file = tmp_f)
  res <- results(dds, 
                 contrast=c("group_list","tumor","normal"))
  resOrdered <- res[order(res$padj),]
  head(resOrdered)
  DEG =as.data.frame(resOrdered)
  DESeq2_DEG = na.omit(DEG)
  
  nrDEG=DESeq2_DEG[,c(2,6)]
  colnames(nrDEG)=c('log2FoldChange','pvalue')  
  draw_h_v(exprSet,nrDEG,'DEseq2',group_list,1)
}
PCA

DEG_top50_heatmap

volcano
### Then run edgeR 
###
### ---------------
if(T){
  library(edgeR)
  d <- DGEList(counts=exprSet,group=factor(group_list))
  keep <- rowSums(cpm(d)>1) >= 2
  table(keep)
  d <- d[keep, , keep.lib.sizes=FALSE]
  d$samples$lib.size <- colSums(d$counts)
  d <- calcNormFactors(d)
  d$samples
  dge=d
  design <- model.matrix(~0+factor(group_list))
  rownames(design)<-colnames(dge)
  colnames(design)<-levels(factor(group_list))
  dge=d
  dge <- estimateGLMCommonDisp(dge,design)
  dge <- estimateGLMTrendedDisp(dge, design)
  dge <- estimateGLMTagwiseDisp(dge, design)
  
  fit <- glmFit(dge, design)
  # https://www.biostars.org/p/110861/
  lrt <- glmLRT(fit,  contrast=c(-1,1)) 
  nrDEG=topTags(lrt, n=nrow(dge))
  nrDEG=as.data.frame(nrDEG)
  head(nrDEG)
  edgeR_DEG =nrDEG 
  nrDEG=edgeR_DEG[,c(1,5)]
  colnames(nrDEG)=c('log2FoldChange','pvalue') 
  draw_h_v(exprSet,nrDEG,'edgeR',group_list,1)
  
}
PCA

heatmap

volcano
### Lastly run voom from limma

if(T){
  suppressMessages(library(limma))
  design <- model.matrix(~0+factor(group_list))
  colnames(design)=levels(factor(group_list))
  rownames(design)=colnames(exprSet)
  design
  
  dge <- DGEList(counts=exprSet)
  dge <- calcNormFactors(dge)
  logCPM <- cpm(dge, log=TRUE, prior.count=3)
  
  v <- voom(dge,design,plot=TRUE, normalize="quantile")
  fit <- lmFit(v, design)
  
  group_list
  cont.matrix=makeContrasts(contrasts=c('tumor-normal'),levels = design)
  fit2=contrasts.fit(fit,cont.matrix)
  fit2=eBayes(fit2)
  
  tempOutput = topTable(fit2, coef='tumor-normal', n=Inf)
  DEG_limma_voom = na.omit(tempOutput)
  head(DEG_limma_voom)
  nrDEG=DEG_limma_voom[,c(1,4)]
  colnames(nrDEG)=c('log2FoldChange','pvalue') 
  draw_h_v(exprSet,nrDEG,'limma',group_list,1)
  
}
PCA

heatmap

volcano

tmp_f=file.path(Rdata_dir,'TCGA-KIRC-miRNA-DEG_results.Rdata')

if(file.exists(tmp_f)){
  save(DEG_limma_voom,DESeq2_DEG,edgeR_DEG, file = tmp_f)
  
}else{
  load(file = tmp_f) 
}



nrDEG1=DEG_limma_voom[,c(1,4)]
colnames(nrDEG1)=c('log2FoldChange','pvalue') 

nrDEG2=edgeR_DEG[,c(1,5)]
colnames(nrDEG2)=c('log2FoldChange','pvalue') 

nrDEG3=DESeq2_DEG[,c(2,6)]
colnames(nrDEG3)=c('log2FoldChange','pvalue')  

mi=unique(c(rownames(nrDEG1),rownames(nrDEG1),rownames(nrDEG1)))
lf=data.frame(lf1=nrDEG1[mi,1],
              lf2=nrDEG2[mi,1],
              lf3=nrDEG3[mi,1])
cor(na.omit(lf))
[图片上传中...(image.png-f55ef-1557501086273-0)]

# 可以看到采取不同R包,会有不同的归一化算法,这样算到的logFC会稍微有差异。而且up&down基因数量也有差别
image.png

参考来源:生信技能树

友情链接:

课程分享
生信技能树全球公益巡讲
https://mp.weixin.qq.com/s/E9ykuIbc-2Ja9HOY0bn_6g
B站公益74小时生信工程师教学视频合辑
https://mp.weixin.qq.com/s/IyFK7l_WBAiUgqQi8O7Hxw
招学徒:
https://mp.weixin.qq.com/s/KgbilzXnFjbKKunuw7NVfw

欢迎关注公众号:青岛生信菜鸟团

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容