Rasa中的Tracker,Policy,Action和Agent

image

Tracker和Event

在Rasa Core中Tracker负责记录整个对话的流程,而Tracker中数据的新增、编辑和删除是通过Event进行管理的。

Policy

Policy是负责决策Action的调用在Tracker的状态发生变更之后,Policy来决定下一步的Action。

Action

Action是对用户输入的一种回应:

Actions are the things your bot runs in response to user input. There are three kinds of actions in Rasa Core:

  1. default actions (action_listen, action_restart, action_default_fallback)
  2. utter actions, starting with utter_, which just sends a message to the user.
  3. custom actions - any other action, these actions can run arbitrary code

Action的自定义比较简单,只需要继承Action并提供对应方法即可。普通的Action是通过run方法来实现功能,例如讲一个笑话:

from rasa_core_sdk import Action

class ActionJoke(Action):
    def name(self):
        # define the name of the action which can then be included in training stories
        return "action_joke"

    def run(self, dispatcher, tracker, domain):
        # what your action should do
        request = requests.get('http://api.icndb.com/jokes/random').json() #make an apie call
        joke = request['value']['joke'] #extract a joke from returned json response
        dispatcher.utter_message(joke) #send the message back to the user
        return []

另一种常用的Action是FromAction,这种Action会进行表单校验,要求用户提供指定的slots:

class UserInfoForm(FormAction):
   """Example of a custom form action"""

   def name(self):
       # type: () -> Text
       """Unique identifier of the form"""

       return "userinfo_form"

   @staticmethod
   def required_slots(tracker):
       # type: () -> List[Text]
       """A list of required slots that the form has to fill"""

       return ["user_name"]

   def submit(self, dispatcher, tracker, domain):
       # type: (CollectingDispatcher, Tracker, Dict[Text, Any]) -> List[Dict]
       """Define what the form has to do
           after all required slots are filled"""

       # utter submit template
       # dispatcher.utter_template('utter_info_basic', tracker)
       response = {
               "intent": "user_info_basic",
               "slots":[
                   tracker.get_slot("user_name")
                   ]
               }
       dispatcher.utter_message(json.dumps(response))
       # dispatcher.utter_attachment(*elements)
       return []

在Action定义完成后需要在domain中添加,并且需要ActionServer来调用这些Action提供服务。

Agent

Agent将Rasa Core的功能通过API开放出来,像模型训练,对话处理等都可以通过Agent完成,一个模型训练的例子:

import sys
from rasa_core.policies.keras_policy import KerasPolicy
from rasa_core.agent import Agent

if len(sys.argv) < 3:
    print("请指定数据路径和模型的存储名称")
    exit()

domain = "{}/domain.yml".format(sys.argv[1])
stories = "{}/data/stories.md".format(sys.argv[1])
dialogue = "{}/models/{}".format(sys.argv[1], sys.argv[2])

agent = Agent(domain, policies=[KerasPolicy(validation_split=0.0,epochs=400)])
training_data = agent.load_data(stories)
agent.train(training_data)
agent.persist(dialogue)

Agent可以作为Rasa Core服务的入口,通过Agent来访问Rasa Core提供的功能。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343