rocketMq问题

rocketMq的部署架构模型

RocketMQ是一个分布式开放消息中间件,底层基于队列模型来实现消息收发功能。RocketMQ集群中包含4个模块:Namesrv, Broker, Producer, Consumer。

  • Namesrv: 存储当前集群所有Brokers信息、Topic跟Broker的对应关系。
  • Broker: 集群最核心模块,主要负责Topic消息存储、消费者的消费位点管理(消费进度)。
  • Producer: 消息生产者,每个生产者都有一个ID(编号),多个生产者实例可以共用同一个ID。同一个ID下所有实例组成一个生产者集群。
  • Consumer: 消息消费者,每个订阅者也有一个ID(编号),多个消费者实例可以共用同一个ID。同一个ID下所有实例组成一个消费者集群。
集群部署架构
image.png

结合部署结构图,描述集群工作流程:
1,启动Namesrv,Namesrv起来后监听端口,等待Broker、Produer、Consumer连上来,相当于一个路由控制中心。
2,Broker启动,跟所有的Namesrv保持长连接,定时发送心跳包。心跳包中包含当前Broker信息(IP+端口等)以及存储所有topic信息。注册成功后,namesrv集群中就有Topic跟Broker的映射关系。
3,收发消息前,先创建topic,创建topic时需要指定该topic要存储在哪些Broker上。也可以在发送消息时自动创建Topic。
4,Producer发送消息,启动时先跟Namesrv集群中的其中一台建立长连接,并从Namesrv中获取当前发送的Topic存在哪些Broker上,然后跟对应的Broker建立长连接,直接向Broker发消息。
5,Consumer跟Producer类似。跟其中一台Namesrv建立长连接,获取当前订阅Topic存在哪些Broker上,然后直接跟Broker建立连接通道,开始消费消息。

各模块特性

nameServ
  1. Namesrv用于存储Topic、Broker关系信息,功能简单,稳定性高。多个Namesrv之间相互没有通信,单台Namesrv宕机不影响其他Namesrv与集群;即使整个Namesrv集群宕机,已经正常工作的Producer,Consumer,Broker仍然能正常工作,但新起的Producer, Consumer,Broker就无法工作。
  2. Namesrv压力不会太大,平时主要开销是在维持心跳和提供Topic-Broker的关系数据。但有一点需要注意,Broker向Namesr发心跳时,会带上当前自己所负责的所有Topic信息,如果Topic个数太多(万级别),会导致一次心跳中,就Topic的数据就几十M,网络情况差的话,网络传输失败,心跳失败,导致Namesrv误认为Broker心跳失败。
Broker
  • Broker的高并发读写主要是依靠以下两点:
    1.消息顺序写,所有Topic数据同时只会写一个文件,一个文件满1G,再写新文件,真正的顺序写盘,使得发消息TPS大幅提高。
    2.消息随机读,RocketMQ尽可能让读命中系统pagecache,因为操作系统访问pagecache时,即使只访问1K的消息,系统也会提前预读出更多的数据,在下次读时就可能命中pagecache,减少IO操作
  • 负载均衡与动态伸缩
    1.负载均衡:Broker上存Topic信息,Topic由多个队列组成,队列会平均分散在多个Broker上,而Producer的发送机制保证消息尽量平均分布到所有队列中,最终效果就是所有消息都平均落在每个Broker上。
    2.动态伸缩能力(非顺序消息):Broker的伸缩性体现在两个维度:Topic, Broker。
    1)Topic维度:假如一个Topic的消息量特别大,但集群水位压力还是很低,就可以扩大该Topic的队列数,Topic的队列数跟发送、消费速度成正比。
    2)Broker维度:如果集群水位很高了,需要扩容,直接加机器部署Broker就可以。Broker起来后向Namesrv注册,Producer、Consumer通过Namesrv发现新Broker,立即跟该Broker直连,收发消息。
  • 高可用&高可靠
    1.高可用:集群部署时一般都为主备,备机实时从主机同步消息,如果其中一个主机宕机,备机提供消费服务,但不提供写服务
    2.高可靠:所有发往broker的消息,有同步刷盘和异步刷盘机制;同步刷盘时,消息写入物理文件才会返回成功,异步刷盘时,只有机器宕机,才会产生消息丢失,broker挂掉可能会发生,但是机器宕机崩溃是很少发生的,除非突然断电。
  • Broker与Namesrv的心跳机制
    单个Broker跟所有Namesrv保持心跳请求,心跳间隔为30秒,心跳请求中包括当前Broker所有的Topic信息。Namesrv会反查Broer的心跳信息,如果某个Broker在2分钟之内都没有心跳,则认为该Broker下线,调整Topic跟Broker的对应关系。但此时Namesrv不会主动通知Producer、Consumer有Broker宕机。
消费者

消费者启动时需要指定Namesrv地址,与其中一个Namesrv建立长连接。消费者每隔30秒从nameserver获取所有topic的最新队列情况,这意味着某个broker如果宕机,客户端最多要30秒才能感知。连接建立后,从namesrv中获取当前消费Topic所涉及的Broker,直连Broker。

Consumer跟Broker是长连接,会每隔30秒发心跳信息到Broker。Broker端每10秒检查一次当前存活的Consumer,若发现某个Consumer 2分钟内没有心跳,就断开与该Consumer的连接,并且向该消费组的其他实例发送通知,触发该消费者集群的负载均衡。

  • 消费者端的负载均衡
    先讨论消费者的消费模式,消费者有两种模式消费:集群消费,广播消费。
    1.广播消费:每个消费者消费Topic下的所有队列。
    2.集群消费:一个topic可以由同一个ID下所有消费者分担消费。具体例子:假如TopicA有6个队列,某个消费者ID起了2个消费者实例,那么每个消费者负责消费3个队列。如果再增加一个消费者ID相同消费者实例,即当前共有3个消费者同时消费6个队列,那每个消费者负责2个队列的消费。

消费者端的负载均衡,就是集群消费模式下,同一个ID的所有消费者实例平均消费该Topic的所有队列。

生产者(Producer)

Producer启动时,也需要指定Namesrv的地址,从Namesrv集群中选一台建立长连接。如果该Namesrv宕机,会自动连其他Namesrv。直到有可用的Namesrv为止。

生产者每30秒从Namesrv获取Topic跟Broker的映射关系,更新到本地内存中。再跟Topic涉及的所有Broker建立长连接,每隔30秒发一次心跳。在Broker端也会每10秒扫描一次当前注册的Producer,如果发现某个Producer超过2分钟都没有发心跳,则断开连接。

  • 生产者端的负载均衡
    生产者发送时,会自动轮询当前所有可发送的broker,一条消息发送成功,下次换另外一个broker发送,以达到消息平均落到所有的broker上。

这里需要注意一点:假如某个Broker宕机,意味生产者最长需要30秒才能感知到。在这期间会向宕机的Broker发送消息。当一条消息发送到某个Broker失败后,会往该broker自动再重发2次,假如还是发送失败,则抛出发送失败异常。业务捕获异常,重新发送即可。客户端里会自动轮询另外一个Broker重新发送,这个对于用户是透明的。

rocketMq如何保证高可用?

rocket的高可用体现在几方面:nameSev、broker、consumer、prodicer

  • nameSer是集群的,单台Namesrv宕机不影响其他Namesrv与集群;即使整个Namesrv集群宕机,已经正常工作的Producer,Consumer,Broker仍然能正常工作,但新起的Producer, Consumer,Broker就无法工作。
  • broker:高可用:集群部署时一般都为主备,备机实时从主机同步消息,如果其中一个主机宕机,备机提供消费服务,但不提供写服务。
    2.高可靠:所有发往broker的消息,有同步刷盘和异步刷盘机制;
  • consumer:当 master 不可用或者繁忙时,consumer 会被自动切换到 slave 读。所以,即使 master 出现故障,consumer 仍然可以从 slave 读消息,不受影响。
  • produber:创建 topic 时,把 message queue 创建在多个 broker 组上(brokerName 一样,brokerId 不同),当一个 broker 组的 master 不可用后,其他组的 master 仍然可以用,producer 可以继续发消息。

rocketMq的延时队列怎么实现的?

说明:rocketmq实现的延时队列只支持特定的延时时间段,1s,5s,10s,...2h,不能支持任意时间段的延时,如果需要支持其他时间段的,需要额外配置。

具体实现:rocketmq发送延时消息时先把消息按照延迟时间段发送到指定的队列中(rocketmq把每种延迟时间段的消息都存放到同一个队列中)然后通过一个定时器进行轮训这些队列,查看消息是否到期,如果到期就把这个消息发送到指定topic的队列中,这样的好处是同一队列中的消息延时时间是一致的,还有一个好处是这个队列中的消息时按照消息到期时间进行递增排序的,说的简单直白就是队列中消息越靠前的到期时间越早


image.png
总结
  • 优点:设计简单,把所有相同延迟时间的消息都先放到一个队列中,定时扫描,可以保证消息消费的有序性
  • 缺点:定时器采用了timer,timer是单线程运行,如果延迟消息数量很大的情况下,可能单线程处理不过来,造成消息到期后也没有发送出去的情况
  • 改进点:可以在每个延迟队列上各采用一个timer,或者使用timer进行扫描,加一个线程池对消息进行处理,这样可以提供效率

rocket的高性能怎么实现的?

参考:RocketMQ高并发读写

rocketmq的高并发读写主要体现在客户端首发消息、服务端接受消息并持久化上面

客户端首发消息
  • 客户端发送消息:有负载均衡,客户端内存保存着所有的broker地址,轮流想每台broker发送消息,是的每台broker均匀的接受消息,避免热点问题。
  • 客户端消费放也是负载均衡集群消息模式的:同一个Id下的所有消费者实例,平均消费该topic下的所有队列
    要点就是多台机器一起发,一起收
服务端(broker)

服务端的高并发读写主要是利用了操作系统的pageCache特性

  • 服务端写磁盘:
    1.服务端写数据是先写入pageCache,每满4k数据一次性输入磁盘,不需要每次io都与磁盘交互,大大提升了写入的速度
    2.写入磁盘的时候,是顺序写入的,访问速度快
  • 服务端从磁盘度数据:
    1.读数据的时候首先检查是否在pagecache缓存中
    2.如果不在的话,从磁盘中一次读出几页预加载进缓存,后面直接从缓存读数据
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 230,321评论 6 543
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 99,559评论 3 429
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 178,442评论 0 383
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 63,835评论 1 317
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 72,581评论 6 412
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 55,922评论 1 328
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,931评论 3 447
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 43,096评论 0 290
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 49,639评论 1 336
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 41,374评论 3 358
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 43,591评论 1 374
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 39,104评论 5 364
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,789评论 3 349
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 35,196评论 0 28
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 36,524评论 1 295
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 52,322评论 3 400
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 48,554评论 2 379

推荐阅读更多精彩内容

  • 核心组件(4个组件+消息存储结构) 客户端消费模式 1. MQ的使用场景 昨天在写完之后,有些读者在评论中提出:到...
    楼亭樵客阅读 1,053评论 0 3
  • 1 架构原理 1.1 应用场景 只支持发布订阅模式。 大数据量的消息堆积能力,最终数据是持久化到磁盘上,理论上无限...
    可笑可乐阅读 9,406评论 0 2
  • 本来想将broker和client分开写。但是他们的每个功能都是共同协作完成的,写broker的时候,难免会涉及到...
    msrpp阅读 3,571评论 1 7
  • Apache RocketMQ 基础概念及架构解析 Apache RocketMQ 系列: Apache Rock...
    挂机的啊洋zzZ阅读 6,150评论 1 47
  • Producer:消息生产者 Consumer:消息消费者 nameServer:路由中心 broker:消息队列...
    Patrick_e604阅读 352评论 0 1