Python 数据可视化:Matplotlib 使用详解



导读

Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。

以下内容来自Github,为《PythonDataScienceHandbook[1]》(Python 数据科学手册[2])第四章Matplotlib介绍部分。全部内容都在以下环境演示通过:

  • numpy:1.18.5

  • pandas:1.0.5

  • matplotlib:3.2.1

1.简单的折线图

对于图表来说,最简单的莫过于作出一个单一函数 的图像。本节中我们首先来介绍创建这种类型图表。本节和后续小节中,我们都会使用下面的代码将我们需要的包载入到 notebook 中:

import matplotlib.pyplot as plt
plt.style.use( seaborn-whitegrid )
import numpy as np

对于所有的 Matplotlib 图表来说,我们都需要从创建图形和维度开始。图形和维度可以使用下面代码进行最简形式的创建:

fig = plt.figure()
ax = plt.axes()
image

在 Matplotlib 中,图形(类plt.Figure的一个实例)可以被认为是一个包括所有维度、图像、文本和标签对象的容器。维度(类plt.Axes的一个实例)就是你上面看到的图像,一个有边界的格子包括刻度和标签,最终还有我们画在上面的图表元素。在本书中,我们会使用变量名fig来指代图形对象,以及变量名ax来指代维度变量。

一旦我们创建了维度,我们可以使用ax.plot方法将数据绘制在图表上。下面是一个简单的正弦函数图形:

fig = plt.figure()ax = plt.axes()x = np.linspace(0, 10, 1000)ax.plot(x, np.sin(x));
image

同样的,我们可以使用 pylab 接口(MATLAB 风格的接口)帮我们在后台自动创建这两个对象:

plt.plot(x, np.sin(x));
image

如果我们需要在同一幅图形中绘制多根线条,只需要多次调用plot函数即可:

plt.plot(x, np.sin(x))plt.plot(x, np.cos(x));
image

这就是在 Matplotlib 中绘制简单函数图像的所有接口了。下面我们深入了解一下控制坐标轴和线条外观的细节。

调整折线图:线条颜色和风格

你可能第一个想到需要进行调整的部分就是线条的颜色和风格。plt.plot()函数接受额外的参数可以用来指定它们。通过指定color关键字参数可以调整颜色,这个字符串类型参数基本上能用来代表任何你能想到的颜色。可以通过多种方式指定颜色参数:

所有 HTML 颜色名称可以在这里[3]找到。

plt.plot(x, np.sin(x - 0), color= blue )        # 通过颜色名称指定
plt.plot(x, np.sin(x - 1), color= g )           # 通过颜色简写名称指定
plt.plot(x, np.sin(x - 2), color= 0.75 )        # 介于0-1之间的灰阶值
plt.plot(x, np.sin(x - 3), color= #FFDD44 )     # 16进制的RRGGBB值
plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB元组的颜色值,每个值介于0-1
plt.plot(x, np.sin(x - 5), color= chartreuse ); # 能支持所有HTML颜色名称值
image

如果没有指定颜色,Matplotlib 会在一组默认颜色值中循环使用来绘制每一条线条。类似的,通过linestyle关键字参数可以指定线条的风格:

还有 88% 的精彩内容
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
支付 ¥9.99 继续阅读

推荐阅读更多精彩内容