1126.Eulerian Path

题目描述

In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6

Sample Output 1:

2 4 4 4 4 4 2
Eulerian

Sample Input 2:

6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6

Sample Output 2:

2 4 4 4 3 3
Semi-Eulerian

Sample Input 3:

5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3

Sample Output 3:

3 3 4 3 3
Non-Eulerian

题意理解

判断一个图是否为欧拉图
1.全部的顶点度为偶数的连通图 Eulerian
2.仅有两个顶点的度为奇数的连通图 Semi-Eulerian
3.其他 Non-Eulerian

思路

dfs

代码

#include <iostream>
#include <vector>
using namespace std;
vector<vector<int>> v;
vector<bool> visit;
int cnt = 0;
void dfs(int index) {
    visit[index] = true;
    cnt++;
    for (int it : v[index]) {
        if (visit[it] == false) dfs(it);
    }
}
int main() {
    int n, m, even=0;
    cin >> n >> m;
    v.resize(n + 1);
    visit.resize(n + 1);
    for (int i = 0; i < m; i++) {
        int a, b;
        cin >> a >> b;
        v[a].push_back(b);
        v[b].push_back(a);
    }
    for (int i = 1; i <= n; i++) {
        cout << v[i].size() << (i != n ? " " : "\n");
        if (v[i].size() % 2 == 0) even++;
    }
    dfs(1);
    if (even == n && cnt == n) cout << "Eulerian";
    else if (even == n - 2 && cnt == n) cout << "Semi-Eulerian";
    else cout << "Non-Eulerian";
    return 0;
}
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,424评论 0 10
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,502评论 0 13
  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,797评论 0 23
  • 说起吃我可以打起一宿不睡的精神,上至螃蟹海星虾类,下至1角一袋的辣条,只要是入我口物也,都使我乐死不疲. 关于吃在...
    哈本阅读 123评论 0 1
  • 安装 & 启动 Redis 安装 Redis 启动 数据类型 通用命令 数据类型 & 内部编码 单线程 strin...
    乌鲁木齐001号程序员阅读 424评论 0 1