MLSQL解决了什么问题

先看看做算法有哪些痛点(我们假设大部分算法的代码都是基于Python的):

  1. 项目难以重现,可阅读性和环境要求导致能把另外一个同事写的python项目运行起来不得不靠运气
  2. 和大数据平台衔接并不容易,需要让研发重新做工程实现,导致落地周期变长。
  3. 训练时数据预处理/特征化无法在预测时复用
  4. 集成到流式,批处理和提供API服务都不是一件容易的事情
  5. 代码/算法复用级别有限,依赖于算法自身的经验以及自身的工具箱,团队难以共享。
  6. 其他团队很难接入算法的工作

MLSQL如何解决这些问题呢?

统一交互语言

MLSQL提供了一套SQL的超集的DSL语法MLSQL,数据处理,模型训练,模型预测部署等都是以MLSQL语言交互,该语言简单易懂,无论算法,分析师,甚至运营都能看懂,极大的减少了团队的沟通成本,同时也使得更多的人可以做算法方面的工作。

数据预处理 / 算法模块化

所有较为复杂的数据预处理和算法都是模块化的,通过函数以及纯SQL来进行衔接。比如:

-- load data
load parquet.`${rawDataPath}` as orginal_text_corpus;

-- select only columns we care
select feature,label from orginal_text_corpus as orginal_text_corpus;

-- feature enginere moduel
train zhuml_orginal_text_corpus  as TfIdfInPlace.`${tfidfFeaturePath}` 
where inputCol="content" 
and `dic.paths`="/data/dict_word.txt" 
and stopWordPath="/data/stop_words"
and nGrams="2";

-- load data
load parquet.`${tfidfFeaturePath}/data` as tfidfdata;

--  algorithm module
train zhuml_corpus_featurize_training as PythonAlg.`${modelPath}` 
where pythonScriptPath="${sklearnTrainPath}"
-- kafka params for log
and `kafkaParam.bootstrap.servers`="${kafkaDomain}"
and `kafkaParam.topic`="test"
and `kafkaParam.group_id`="g_test-2"
and `kafkaParam.userName`="pi-algo"
-- distribute data
and  enableDataLocal="true"
and  dataLocalFormat="json"
-- sklearn params
and `fitParam.0.moduleName`="sklearn.svm"
and `fitParam.0.className`="SVC"
and `fitParam.0.featureCol`="features"
and `fitParam.0.labelCol`="label"
and `fitParam.0.class_weight`="balanced"
and `fitParam.0.verbose`="true"

and `fitParam.1.moduleName`="sklearn.naive_bayes"
and `fitParam.1.className`="GaussianNB"
and `fitParam.1.featureCol`="features"
and `fitParam.1.labelCol`="label"
and `fitParam.1.class_weight`="balanced"
and `fitParam.1.labelSize`="2"

-- python env
and `systemParam.pythonPath`="python"
and `systemParam.pythonParam`="-u"
and `systemParam.pythonVer`="2.7";

这段小脚本脚本完成了数据加载,特征工程,最后的训练。所有以train开头的,都是模块,以select 开头的都是标准sql,
以load开头的则是各种数据源的加载。

在MLSQL中,任何一个模块都有两个产出:模型和函数。训练时该模块会产生一个对应的模型,预测时该模型会提供一个函数,从而实现

  • 对训练阶段的数据处理逻辑,在预测时能进行复用。
  • 算法训练的模型可以直接部署成一个预测函数。

标准遵循

所有数据处理模块,算法模块,都有标准的暴露参数的方式,也就是前面例子类似下面的句子:

and `fitParam.0.labelCol`="label"
and `fitParam.0.class_weight`="balanced"
and `fitParam.0.verbose`="true"

比如该算法暴露了class_weight,labelCol,verbose等参数。所有人开发的算法模块和数据处理模块都可以很好的进行复用。

分布式和单机多种部署形态

MLSQL是基于Spark改造而成,这就直接继承了Spark的多个优点:

  • 你可以在MLSQL里获取基本上大部分存储的支持,比如ES,MySQL,Parquet,ORC,JSON,CSV等等
  • 你可以部署在多种环境里,比如Yarn,Mesos,Local等模式

数据处理模块/算法模型易于部署

同行启动一个local模式的MLSQL Server,然后注册我们训练的时候使用到的数据处理模块和算法模块,每个模块都会产生一个函数,接着就能通过http接口传递一个函数嵌套的方式完成一个pipeline的使用了。对于函数我们确保其响应速度,一般都是在毫秒级。
注册就是一个简单的register语句:

-- transform model into udf
register PythonAlg.`${modelPath}` as topic_spam_predict options 
pythonScriptPath="${sklearnPredictPath}"
;

支持所有提供了Python语言接口的算法框架的集成

只要实现MLSQL的标准规范,你就能够轻而易举的将各种框架集成到MLSQL中。目前已经支持SKlearn,同时有Keras图片处理等相关例子。算法可以专注于算法模块的研发,研发可以专注于数据处理模块的开发,所有的人都可以通过MLSQL复用这些模块,完成算法业务的开发。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容

  • 1.ios高性能编程 (1).内层 最小的内层平均值和峰值(2).耗电量 高效的算法和数据结构(3).初始化时...
    欧辰_OSR阅读 29,350评论 8 265
  • 嗨咯,首先复述一下我这个专题计划。阅读是个人知识库输入的重要来源,然而,你真的懂阅读吗?你是否也停留在“读不完、没...
    Excel自习室阅读 2,152评论 5 23
  • 书卷适宜归隐沦, 安然竹下绝风尘。 门前桂影迎宾客, 窗口幽兰笑主人。 东壁园边看玉树, 西邻溪畔醉新春。 掩扉闲...
    湖畔渔夫阅读 382评论 2 2
  • 我爱这片田野 爱这生命开始的地方 爱它无穷无尽的希望 爱它无边无涯的远方 爱它裸露的胸膛 任风雨白般蹂躏 依然把万...
    燕子_5c93阅读 257评论 0 1
  • 山大沟深花艳, 坡陡弯急车慢。 天高云淡心悬, 左顾右盼腰酸。 远走他乡游玩, 起早贪黑无怨。 排除万难艰险, 只...
    宗林的李阅读 167评论 1 3