吴恩达深度学习笔记-搭建多层神经网络

吴恩达作业-搭建多层神经网络。神经网络的结构可以有很多层,结构是输入层>隐藏层>隐藏层>>>输出层,在每一层中,首先计算的是矩阵相乘[linear_forward],然后再计算激活函数[linear_activation_forward],合并起来就是这一层的计算方式,所以每一层的计算都有两个步骤。可参照如下图:

计算步骤表示图

文末附全部代码链接

计算伪代码如下:
1.初始化网络参数
2.前向传播
(1)计算一层的线性求和部分
(2)计算激活函数的部分
(3)结合线性求和与激活函数
3.计算误差
4.反向传播
(1)线性部分的反向传播公式
(2)激活函数部分的反向传播公式
(3)结合线性部分与激活函数的反向传播公式
5.更新参数

每一个前向传播函数都对应一个反向传播函数

准备软件库

开始之前我们要准备软件库:

import numpy as np
import h5py
import matplotlib.pyplot as plt
import testCases 
from dnn_utils import sigmoid, sigmoid_backward, relu, relu_backward 
import lr_utils 

然后开始构建初始化参数的函数,指定随机种子

np.random.seed(1)

初始化参数

对于一个两层的神经网络结构而言,模型结构是线性->ReLU->线性->sigmoid函数。
初始化函数如下:

def initialize_parameters(n_x,n_h,n_y):
    """
    此函数是为了初始化两层网络参数而使用的函数。
    参数:
        n_x - 输入层节点数量
        n_h - 隐藏层节点数量
        n_y - 输出层节点数量
    
    返回:
        parameters - 包含你的参数的python字典:
            W1 - 权重矩阵,维度为(n_h,n_x)
            b1 - 偏向量,维度为(n_h,1)
            W2 - 权重矩阵,维度为(n_y,n_h)
            b2 - 偏向量,维度为(n_y,1)

    """
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros((n_y, 1))
    
    #使用断言确保我的数据格式是正确的
    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))
    
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return parameters  

初始化之后我们测试一下:

print("==============测试initialize_parameters==============")
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

测试结果:

W1 = [[ 0.01624345 -0.00611756 -0.00528172]
 [-0.01072969  0.00865408 -0.02301539]]
b1 = [[0.]
 [0.]]
W2 = [[ 0.01744812 -0.00761207]]
b2 = [[0.]]

两层的神经网络已经测试完毕。
现在定义一个计算的函数,

def initialize_parameters_deep(layers_dims):
    """
    此函数是为了初始化多层网络参数而使用的函数。
    参数:
        layers_dims - 包含我们网络中每个图层的节点数量的列表
    
    返回:
        parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:
                     W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1])
                     bl - 偏向量,维度为(layers_dims [1],1)
    """
    np.random.seed(3)
    parameters = {}
    L = len(layers_dims)
    
    for l in range(1,L):
        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))
        
        #确保我要的数据的格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l], 1))
        
    return parameters

其中np.random.randn返回一个或一组服从正态分布的随机样本值。
接下来测试一下这个函数

#测试initialize_parameters_deep
print("==============测试initialize_parameters_deep==============")
layers_dims = [5,4,3]
parameters = initialize_parameters_deep(layers_dims)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))

测试结果为:

==============测试initialize_parameters_deep==============
W1 = [[ 0.79989897  0.19521314  0.04315498 -0.83337927 -0.12405178]
 [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839]
 [-0.58757818  0.39561516  0.39413741  0.76454432  0.02237573]
 [-0.18097724 -0.24389238 -0.69160568  0.43932807 -0.49241241]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.59252326 -0.10282495  0.74307418  0.11835813]
 [-0.51189257 -0.3564966   0.31262248 -0.08025668]
 [-0.38441818 -0.11501536  0.37252813  0.98805539]]
b2 = [[0.]
 [0.]
 [0.]]

我们现在就已经构建了两层神经网络的初始化参数的函数,现在我们开始构建前向传播函数。

前向传播函数

前向传播共有三个步骤
1.linear
2.linear->activation(其中激活函数将会使用ReLU或Sigmoid)
3.[linear->RELU]*(L-1)->linear->sigmoid(整个模型)
其中线性正向传播模块使用如下公式计算


正向传播公式
线性部分linear

前向传播中,线性部分计算如下:

def linear_forward(A,W,b):
    """
    实现前向传播的线性部分。

    参数:
        A - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
        W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一图层的节点数量)
        b - 偏向量,numpy向量,维度为(当前图层节点数量,1)

    返回:
         Z - 激活功能的输入,也称为预激活参数
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    """
    Z = np.dot(W,A) + b
    assert(Z.shape == (W.shape[0],A.shape[1]))
    cache = (A,W,b)
     
    return Z,cache

测试一下线性部分:

#测试linear_forward
print("==============测试linear_forward==============")
A,W,b = testCases.linear_forward_test_case()
Z,linear_cache = linear_forward(A,W,b)
print("Z = " + str(Z))

测试结果:

==============测试linear_forward==============
Z = [[ 3.26295337 -1.23429987]]
线性激活部分linear->activation

为了方便,我们把线性和激活功能分组为一个功能。因此我们将实现一个执行linear前进的步骤,然后执行activation前进步骤的功能。


激活函数表达式

我们为了实现线性激活这个步骤,使用的公式是
线性激活表达式

其中函数g会是sigmoid或者是relu,但是sigmoid函数只会在输出层使用!
前向线性激活部分如下:
def linear_activation_forward(A_prev,W,b,activation):
    """
    实现LINEAR-> ACTIVATION 这一层的前向传播

    参数:
        A_prev - 来自上一层(或输入层)的激活,维度为(上一层的节点数量,示例数)
        W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)
        b - 偏向量,numpy阵列,维度为(当前层的节点数量,1)
        activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】

    返回:
        A - 激活函数的输出,也称为激活后的值
        cache - 一个包含“linear_cache”和“activation_cache”的字典,我们需要存储它以有效地计算后向传递
    """
    
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "relu":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)
    
    assert(A.shape == (W.shape[0],A_prev.shape[1]))
    cache = (linear_cache,activation_cache)
    
    return A,cache

接下来测试一下:

#测试linear_activation_forward
print("==============测试linear_activation_forward==============")
A_prev, W,b = testCases.linear_activation_forward_test_case()

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "sigmoid")
print("sigmoid,A = " + str(A))

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation = "relu")
print("ReLU,A = " + str(A))

测试结果:

==============测试linear_activation_forward==============
sigmoid,A = [[0.96890023 0.11013289]]
ReLU,A = [[3.43896131 0.        ]]

现在为止,两层模型的前向传播函数已经完成了,那多层网络模型的前向传播要怎么做呢,我们继续调用上面的函数来实现它们,为了实现在L层神经网络时更加方便,我们需要一个函数来复制前一个函数(ReLU)L-1次,然后用一个带有Sigmoid函数来跟踪它,结构如下图:


多层网络结构

多层模型的前向传播计算模型代码如下:

def L_model_forward(X,parameters):
    """
    实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION
    
    参数:
        X - 数据,numpy数组,维度为(输入节点数量,示例数)
        parameters - initialize_parameters_deep()的输出
    
    返回:
        AL - 最后的激活值
        caches - 包含以下内容的缓存列表:
                 linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2)
                 linear_sigmoid_forward()的cache(只有一个,索引为L-1)
    """
    caches = []
    A = X
    L = len(parameters) // 2
    for l in range(1,L):
        A_prev = A 
        A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")
        caches.append(cache)
    
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")
    caches.append(cache)
    
    assert(AL.shape == (1,X.shape[1]))
    
    return AL,caches

然后测试一下:

==============测试L_model_forward==============
AL = [[0.17007265 0.2524272 ]]
caches 的长度为 = 2

测试结果如上所示,其中AL表达式如下图所示:


AL表达式

计算成本

我们已经把模型的前向传播部分完成了,接下来需要计算成本(误差),以确定它到底有没有在学习,成本的计算公式如下:


成本计算公式

代码如下:

def compute_cost(AL,Y):
    """
    实施等式(4)定义的成本函数。

    参数:
        AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
        Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)

    返回:
        cost - 交叉熵成本
    """
    m = Y.shape[1]
    cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m
        
    cost = np.squeeze(cost)
    assert(cost.shape == ())

    return cost

接下来测试一下这个函数

#测试compute_cost
print("==============测试compute_cost==============")
Y,AL = testCases.compute_cost_test_case()
print("cost = " + str(compute_cost(AL, Y)))

误差结果

==============测试compute_cost==============
cost = 0.414931599615397

误差值已经计算出来了,现在进行反向传播!

反向传播

反向传播用于计算相对于参数的损失函数的梯度,首先我们看下前向和后向传播的流程图:


前向反向传播流程图

然后对于线性部分的公式如下图


线性部分公式

然后我们使用链式求导法则通过dZ来计算三个输出,公式如下:
求导公式

与前向传播类似,我们需要使用三个步骤来构建反向传播:
1.linear后向计算
2.linear-activation后向计算,其中activation计算ReLU或Sigmoid结果
3.linear->ReLU*(L-1)->linear->Sigmoid后向计算

线性部分(linear backward)

首先实现后向传播线性部分:

def linear_backward(dZ,cache):
    """
    为单层实现反向传播的线性部分(第L层)

    参数:
         dZ - 相对于(当前第l层的)线性输出的成本梯度
         cache - 来自当前层前向传播的值的元组(A_prev,W,b)

    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度,与W的维度相同
         db - 相对于b(当前层l)的成本梯度,与b维度相同
    """
    A_prev, W, b = cache
    m = A_prev.shape[1]
    dW = np.dot(dZ, A_prev.T) / m
    db = np.sum(dZ, axis=1, keepdims=True) / m
    dA_prev = np.dot(W.T, dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW, db

接下来测试函数

#测试linear_backward
print("==============测试linear_backward==============")
dZ, linear_cache = testCases.linear_backward_test_case()

dA_prev, dW, db = linear_backward(dZ, linear_cache)
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))

测试结果:

==============测试linear_backward==============
dA_prev = [[ 0.51822968 -0.19517421]
 [-0.40506361  0.15255393]
 [ 2.37496825 -0.89445391]]
dW = [[-0.10076895  1.40685096  1.64992505]]
db = [[0.50629448]]

线性激活部分(linear->activation backward)

这儿为了实现linear_activation_backward,这儿有两个后向传播函数:
sigmoid_backward

dZ = sigmoid_backward(deactivation_cache)

relu_backward

dZ = relu_backward(deactivation_cache)

如果g(.)是激活函数,那么上述两个后向传播函数计算应该是:


计算dZ

现在开始实现后向线性激活:

def linear_activation_backward(dA,cache,activation="relu"):
    """
    实现LINEAR-> ACTIVATION层的后向传播。
    
    参数:
         dA - 当前层l的激活后的梯度值
         cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
         activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
         db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    """
    linear_cache, activation_cache = cache
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
    return dA_prev,dW,db

测试上述函数:

#测试linear_activation_backward
print("==============测试linear_activation_backward==============")
AL, linear_activation_cache = testCases.linear_activation_backward_test_case()
 
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")
print ("sigmoid:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db) + "\n")
 
dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")
print ("relu:")
print ("dA_prev = "+ str(dA_prev))
print ("dW = " + str(dW))
print ("db = " + str(db))

测试结果:

==============测试linear_activation_backward==============
sigmoid:
dA_prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]]
dW = [[ 0.10266786  0.09778551 -0.01968084]]
db = [[-0.05729622]]

relu:
dA_prev = [[ 0.44090989  0.        ]
 [ 0.37883606  0.        ]
 [-0.2298228   0.        ]]
dW = [[ 0.44513824  0.37371418 -0.10478989]]
db = [[-0.20837892]]

现在我们已经把两层模型的后向计算完成了,对于多层模型我们也需要这两个函数来完成,流程图如下:


反向传播流程图

在之前的前向计算中,我们存储了一些包含(X,w,b,z)的cache,在每一步中,我们需要用那一层的cache值来进行反向传播。

上面提到了AL属于输出层,
AL

所以我们要计算dAL,我们可以使用下面代码来计算
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

计算完之后我们可以使用此激活后的梯度dAL继续向后计算,如下代码构建多层模型向后传播函数:

def L_model_backward(AL,Y,caches):
    """
    对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播
    
    参数:
     AL - 概率向量,正向传播的输出(L_model_forward())
     Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
     caches - 包含以下内容的cache列表:
                 linear_activation_forward("relu")的cache,不包含输出层
                 linear_activation_forward("sigmoid")的cache
    
    返回:
     grads - 具有梯度值的字典
              grads [“dA”+ str(l)] = ...
              grads [“dW”+ str(l)] = ...
              grads [“db”+ str(l)] = ...
    """
    grads = {}
    L = len(caches)
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
    
    current_cache = caches[L-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")
    
    for l in reversed(range(L-1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
    
    return grads

测试如下:

#测试L_model_backward
print("==============测试L_model_backward==============")
AL, Y_assess, caches = testCases.L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))

结果如下:

dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 = [[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
dA1 = [[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]

更新参数

我们现在把前向后向传播都完成了,现在开始更新参数,更新参数公式如下:


更新参数公式

代码如下:

def update_parameters(parameters, grads, learning_rate):
    """
    使用梯度下降更新参数
    
    参数:
     parameters - 包含你的参数的字典
     grads - 包含梯度值的字典,是L_model_backward的输出
    
    返回:
     parameters - 包含更新参数的字典
                   参数[“W”+ str(l)] = ...
                   参数[“b”+ str(l)] = ...
    """
    L = len(parameters) // 2 #整除
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
        
    return parameters

测试代码如下:

#测试update_parameters
print("==============测试update_parameters==============")
parameters, grads = testCases.update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)
 
print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))

测试结果如下:

==============测试update_parameters==============
W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

目前为止,我们已经实现了该神经网络中所有需要的函数。接下来,我们将这些方法组合在一起,构成一个神经网络类,可以方便使用。



搭建一个两层神经网络

一个两层神经网络模型图如下:

两层神经网络模型图

该模型可以概括为:input->linear->relu->linear->sigmoid->output下面开始正式构建两层神经网络:

def two_layer_model(X,Y,layers_dims,learning_rate=0.0075,num_iterations=3000,print_cost=False,isPlot=True):
    """
    实现一个两层的神经网络,【LINEAR->RELU】 -> 【LINEAR->SIGMOID】
    参数:
        X - 输入的数据,维度为(n_x,例子数)
        Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)
        layers_dims - 层数的向量,维度为(n_y,n_h,n_y)
        learning_rate - 学习率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每100次打印一次
        isPlot - 是否绘制出误差值的图谱
    返回:
        parameters - 一个包含W1,b1,W2,b2的字典变量
    """
    np.random.seed(1)
    grads = {}
    costs = []
    (n_x,n_h,n_y) = layers_dims
    
    """
    初始化参数
    """
    parameters = initialize_parameters(n_x, n_h, n_y)
    
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    """
    开始进行迭代
    """
    for i in range(0,num_iterations):
        #前向传播
        A1, cache1 = linear_activation_forward(X, W1, b1, "relu")
        A2, cache2 = linear_activation_forward(A1, W2, b2, "sigmoid")
        
        #计算成本
        cost = compute_cost(A2,Y)
        
        #后向传播
        ##初始化后向传播
        dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
        
        ##向后传播,输入:“dA2,cache2,cache1”。 输出:“dA1,dW2,db2;还有dA0(未使用),dW1,db1”。
        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
        
        ##向后传播完成后的数据保存到grads
        grads["dW1"] = dW1
        grads["db1"] = db1
        grads["dW2"] = dW2
        grads["db2"] = db2
        
        #更新参数
        parameters = update_parameters(parameters,grads,learning_rate)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        #打印成本值,如果print_cost=False则忽略
        if i % 100 == 0:
            #记录成本
            costs.append(cost)
            #是否打印成本值
            if print_cost:
                print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
    #迭代完成,根据条件绘制图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
    #返回parameters
    return parameters

现在开始加载数据集,图像数据集参考猫的图像数据集,代码如下:

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y

数据集加载完成,正式开始训练:

n_x = 12288
n_h = 7
n_y = 1
layers_dims = (n_x,n_h,n_y)

parameters = two_layer_model(train_x, train_set_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True,isPlot=True)

训练结果如下:

第 0 次迭代,成本值为: 0.6930497356599891
第 100 次迭代,成本值为: 0.6464320953428849
第 200 次迭代,成本值为: 0.6325140647912677
第 300 次迭代,成本值为: 0.6015024920354665
第 400 次迭代,成本值为: 0.5601966311605748
第 500 次迭代,成本值为: 0.515830477276473
第 600 次迭代,成本值为: 0.4754901313943325
第 700 次迭代,成本值为: 0.4339163151225749
第 800 次迭代,成本值为: 0.40079775362038866
第 900 次迭代,成本值为: 0.3580705011323798
第 1000 次迭代,成本值为: 0.3394281538366414
第 1100 次迭代,成本值为: 0.3052753636196265
第 1200 次迭代,成本值为: 0.2749137728213017
第 1300 次迭代,成本值为: 0.24681768210614827
第 1400 次迭代,成本值为: 0.198507350374661
第 1500 次迭代,成本值为: 0.17448318112556616
第 1600 次迭代,成本值为: 0.17080762978096295
第 1700 次迭代,成本值为: 0.1130652456216473
第 1800 次迭代,成本值为: 0.09629426845937158
第 1900 次迭代,成本值为: 0.0834261795972687
第 2000 次迭代,成本值为: 0.07439078704319091
第 2100 次迭代,成本值为: 0.06630748132267937
第 2200 次迭代,成本值为: 0.05919329501038175
第 2300 次迭代,成本值为: 0.05336140348560559
第 2400 次迭代,成本值为: 0.04855478562877021
迭代cost值

迭代完成之后我们就可以预测了,预测函数如下:

def predict(X, y, parameters):
    """
    该函数用于预测L层神经网络的结果,当然也包含两层
    
    参数:
     X - 测试集
     y - 标签
     parameters - 训练模型的参数
    
    返回:
     p - 给定数据集X的预测
    """
    
    m = X.shape[1]
    n = len(parameters) // 2 # 神经网络的层数
    p = np.zeros((1,m))
    
    #根据参数前向传播
    probas, caches = L_model_forward(X, parameters)
    
    for i in range(0, probas.shape[1]):
        if probas[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
    
    print("准确度为: "  + str(float(np.sum((p == y))/m)))
        
    return p

预测函数构建好之后,我们就开始预测,查看训练集和测试集的准确性:

predictions_train = predict(train_x, train_y, parameters) #训练集
predictions_test = predict(test_x, test_y, parameters) #测试集

预测结果:

准确度为: 1.0
准确度为: 0.72

结果比第一次的70要高一点,如果使用更多层的神经网络的话,会不会效率更高一点呢?

搭建多层神经网络

首先查看多层神经网络结构


多层神经网络模型

代码如下:

def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):
    """
    实现一个L层神经网络:[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID。
    
    参数:
        X - 输入的数据,维度为(n_x,例子数)
        Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)
        layers_dims - 层数的向量,维度为(n_y,n_h,···,n_h,n_y)
        learning_rate - 学习率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每100次打印一次
        isPlot - 是否绘制出误差值的图谱
    
    返回:
     parameters - 模型学习的参数。 然后他们可以用来预测。
    """
    np.random.seed(1)
    costs = []
    
    parameters = initialize_parameters_deep(layers_dims)
    
    for i in range(0,num_iterations):
        AL , caches = L_model_forward(X,parameters)
        
        cost = compute_cost(AL,Y)
        
        grads = L_model_backward(AL,Y,caches)
        
        parameters = update_parameters(parameters,grads,learning_rate)
        
        #打印成本值,如果print_cost=False则忽略
        if i % 100 == 0:
            #记录成本
            costs.append(cost)
            #是否打印成本值
            if print_cost:
                print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
    #迭代完成,根据条件绘制图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    return parameters

加载数据集信息:

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y

训练神经网络:

layers_dims = [12288, 20, 7, 5, 1] #  5-layer model
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)

训练结果:

第 0 次迭代,成本值为: 0.715731513413713
第 100 次迭代,成本值为: 0.6747377593469114
第 200 次迭代,成本值为: 0.6603365433622127
第 300 次迭代,成本值为: 0.6462887802148751
第 400 次迭代,成本值为: 0.6298131216927773
第 500 次迭代,成本值为: 0.606005622926534
第 600 次迭代,成本值为: 0.5690041263975134
第 700 次迭代,成本值为: 0.519796535043806
第 800 次迭代,成本值为: 0.46415716786282285
第 900 次迭代,成本值为: 0.40842030048298916
第 1000 次迭代,成本值为: 0.37315499216069026
第 1100 次迭代,成本值为: 0.3057237457304711
第 1200 次迭代,成本值为: 0.26810152847740837
第 1300 次迭代,成本值为: 0.23872474827672677
第 1400 次迭代,成本值为: 0.20632263257914715
第 1500 次迭代,成本值为: 0.17943886927493619
第 1600 次迭代,成本值为: 0.15798735818801737
第 1700 次迭代,成本值为: 0.14240413012274625
第 1800 次迭代,成本值为: 0.12865165997889375
第 1900 次迭代,成本值为: 0.11244314998166524
第 2000 次迭代,成本值为: 0.08505631034986234
第 2100 次迭代,成本值为: 0.05758391198619335
第 2200 次迭代,成本值为: 0.044567534547003976
第 2300 次迭代,成本值为: 0.038082751666008864
第 2400 次迭代,成本值为: 0.03441074901842407

预测结果:

准确度为: 0.9952153110047847
准确度为: 0.78
截屏2020-02-10下午9.34.21.png

通过准确度来说,从70%到72%到78%,可以看到的是准确度在一点点增加,如果调整迭代次数或者学习率等参数,准确率可能就会有要高一点。




我们可以看下哪些东西在l层模型中被错误的标记了,导致准确率没有提高。代码如下:

def print_mislabeled_images(classes, X, y, p):
    """
    绘制预测和实际不同的图像。
        X - 数据集
        y - 实际的标签
        p - 预测
    """
    a = p + y
    mislabeled_indices = np.asarray(np.where(a == 1))
    plt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plots
    num_images = len(mislabeled_indices[0])
    for i in range(num_images):
        index = mislabeled_indices[1][I]
        
        plt.subplot(2, num_images, i + 1)
        plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest')
        plt.axis('off')
        plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8"))


print_mislabeled_images(classes, test_x, test_y, pred_test)
未成功识别的猫

这些未识别的猫可以看得出来都是识别难度较大的图片,所以模型的准确率还有待提高,这一次的作业就做到这儿,希望后面的作业还能对这个数据集做进一步优化!

完整代码链接




了解更多请关注作者微信公众号:

一技破万法
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容