mongodb的聚合操作

     在mongodb中有时候我们需要对数据进行分析操作,比如一些统计操作,这个时候简单的查询操作(find)就搞不定这些需求,因此就需要使用  聚合框架(aggregation) 来完成。在mongodb中提供了三种方式来完成聚合操作。aggregation pipelinemap-reduce function, andsingle purpose aggregation methods,本篇文章主要讲解aggregation pipeline(聚合管道)的使用。

Aggregation Pipeline(聚合管道)

     MongoDB的聚合框架基于数据处理管道的概念。文档进入一个多级管道,将文档转换为聚合结果。比如文档的投影,过滤,排序,分组,等等。此外,管道阶段还可以使用操作符来执行任务,例如计算平均值或连接字符串等等。

下图为一个简单的聚合例子(此图来自mongodb的官网)

官网聚合管道案例

如上图所示:先使用$match构建筛选出 status 等于A 的数据,然后使用$group构建分组数据,以 cust_id 进行分组,使用 $sum 进行分组的求和操作。

聚合管道的限制

    1、文档大小限制

     聚合的返回单个文档不可超过16M,但是聚合的过程中单个文档可以超过16M.

    2、内存的限制

    聚合阶段默认情况下可以使用100M的内存,超过则报错。如果想处理需要超过100M内存的   数据,则需要将allowDiskUse设置成true,让其可以写入临时文件。但是在$graphLookup阶段,内存还是限制到100M以内,即使设置了allowDiskUse=true, 在此管道阶段会失效,但是如果以其他的管道阶段还是会生效的。当allowDiskUser=false,内存超出发生异常。

聚合管道阶段

$match用于过滤数据,用于聚合阶段的输入

$order用指定的键,对文档进行排序

$limit用于限制多少个文档作为输入

$skip跳过多少个文档

$project投影字段,可以理解为查询多少个字段,类似为 select a,b,c 中的 a,b,c

$group进行分组操作,其中_id字段用于指定需要分组的字段。

$count返回这个聚合管道阶段的文档的数量

更多管道阶段,请点击这里

聚合管道操作,请点击这里

基本语法:

db.collection.aggregate( [ { }, ... ] )

准备数据:

db.persons.insertMany([

    {userId : '001',age : 24,salary : 5000,dept : '部门一'},   

    {userId : '002',age : 25,salary : 7000,dept : '部门二'},   

    {userId : '003',age : 23,salary : 8000,dept : '部门一'},   

    {userId : '004',age : 26,salary : 1000,dept : '部门三'},   

    {userId : '005',age : 27,salary : 2000,dept : '部门二'},   

    {userId : '006',age : 22,salary : 7000,dept : '部门一'},   

    {userId : '007',age : 25,salary : 6000,dept : '部门三'},   

    {userId : '008',age : 26,salary : 4000,dept : '部门三'},   

    {userId : '009',age : 28,salary : 9000,dept : '部门二'}

])

 1、使用 $project 投影出需要的字段

       * 排除 _id 字段

       * 返回 age字段

       * 产生一个新字段 newAge,它的值为原age字段的值 加 1

db.persons.aggregate([

    {$project : {_id : 0,age : 1,newAge : {$add : ['$age',1]}}}   

])

 2、使用 $match 进行数据的过滤

       和普通的查询条件是一样的。

db.persons.aggregate([

    {$match : {age : {$gt : 22}} }

])

 3、使用 $sort 进行排序

db.persons.aggregate([

    {$match : {age : {$gt : 22}} },

    {$sort : {age : 1}}

])

 4、使用 $limit 和 $skip 进行限制数据和过滤数据

db.persons.aggregate([

    {$match : {age : {$gt : 22}} },

    {$sort : {age : -1}},

    {$limit : 6},

    {$skip : 3}

])

 5、使用 $group 进行分组操作

db.persons.aggregate([

    {$group : {_id : "$dept",count : {$sum : 1}}}

]);

 有了以上的简单知识,我们完成一个简单的练习。

需求: 获取6个年龄大于22周岁的用户,其中如果薪水如果小于1000,直接将薪水上调到4000,前面一步做好后,需要排出年龄最大的一个,求出每个部门,相同年龄的员工的平均薪水,并得到薪水最高的三个人。

思路:1、投影出年龄(age),部分(dept),薪水(salary)字段

            2、查出年龄大于22周岁的员工

            3、以年龄倒叙进行排序

            4、限制返回7条数据,并跳过一条数据

            5、以部门年龄进行分组,并求出平均分

            6、以上一步的平均分在进行倒叙排序

            7、然后再返回3条数据

 代码如下:

db.persons.aggregate([

    { $project : {age : 1,dept : 1,oldSalary : "$salary",salary : {

        $switch : {

            branches : [

                { case : { $lte : ["$salary",1000] }, then : {$sum : ["$salary",4000]}}

            ],

            default : '$salary'

        }

    }} },

    { $match : {age : {$gt : 22}} },

    { $sort : {age : -1}},

    { $limit : 7},

    { $skip : 1 },

    { $group : { _id : {dept : "$dept",age : "$age"},pers : {$sum : 1} , deptAvgSalary : { $avg : "$salary"} } },

    { $sort : {deptAvgSalary : -1}},

    { $limit : 3}

]);

 运行效果

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351

推荐阅读更多精彩内容