TreNet:预测时序趋势

TreNet:预测时序趋势

时序趋势Trend指的是时间序列未来是上升还是下降趋势,通常包括趋势的幅度和持续时间。预测趋势可以用在资源分配,负载调度(如预测负载会变大时,提前增加资源配置来减少负载),股票交易等。其实这个问题也可以变成时序预测问题,预测得到未来的值就能知道未来是什么趋势,不过这样趋势的持续时间是固定的(因为预测的是未来某个时间的值)。
为了解决这个问题,论文Hybrid Neural Networks for Learning the Trend in Time Series,IJCAI-17提出了TreNet,一个端到端的网络,综合学习序列的局部和全局的特征来预测趋势。

Problem

时序趋势表示为持续时间duration和斜率slope,用<l_k, s_k>表示,如下图(c)所示:



图c是一个趋势序列,没有原始序列值信息,而只包含趋势信息的,用T来表示这个趋势序列T={<l_k, s_k>}。原始序列表示为X={x_1, x_2, ... , x_T}。所有的l_k加起来等与序列长度T
趋势序列表示的是时序的整体趋势信息,而没有局部的趋势信息,因此还需要考虑序列的局部具体信息,用L={<x_t(k-w), ..., x_t(k)>}表示,其中tk是trend k的结束时间,w是取的局部序列长度。
现在,问题的目标就是利用趋势序列T和局部序列L来预测未来的趋势<l_t+1, s_t+1>。可以用下图形象的说明:



左图是L,右图是T,然后预测t=100之后的趋势。

TreNet

TreNet使用RNN来捕捉趋势序列T的特征,CNN来捕捉局部序列L的特征,最后将两个特征融合得到未来趋势。整个框架如下图:


  1. RNN用的是naive的LSTM,得到的特征用R(T)表示;
  2. CNN用的是H层1-d卷积来提取局部特征,用C(L)表示;
  3. 特征融合,预测:

    用Wr和Wc矩阵将两个特征映射到相同维度然后相加,经过一个element-wise leaky ReLU activation 函数,最后连接到输出层<l, s>。
    Loss 函数:

实验

实验设置

  • Dataset:
  1. Power Consumption(PC): 一个家庭电量的序列
  2. Gas Sensor. 检测气体的传感器数据
  3. Stock Transaction, Yahoo股票1950-10到2016-4

数据shuffle后分为10%用于测试,其他用于训练。
这里没有提一个序列的过去趋势是怎么确定的,后面我会看看探究怎么确定的,知道了就补充下。

  • Baseine:
  1. CNN:使用的是原始序列来预测
  2. LSTM:使用趋势序列来预测
  3. ConvNet+LSTM:ConvNet提取序列特征,然后用LSTM预测
  4. SVR:联合T和L作输入
  5. Pattern-based hidden markov model(pHMM): 对序列分段然后用HMM建模序列段之间的依赖,然后根据预测时序的状态来决定评估未来趋势。
  6. Naive:用上一trend预测。

(这里的LSTM是对趋势序列做预测的,我觉得应该增加一个使用原始序列来预测的,这里只有用CNN使用原始数据的。)

  • Metric
    RMSE
  • 训练
    省略模型的具体参数.....

实验结果

  1. 对参数窗口大小w做了对比(这里只列出一个):



    从实验设置来看,这个窗口大小最小300,很大,这个应该是因为要预测未来的总体趋势,所以需要使用较大的局部序列。

总结

这篇论文用的方法都是很常见的了,不过做的问题是时序趋势预测,与传统预测未来某个时刻的值不一样,不过两者有很多共同的应用(都是对未来的预测)。这种预测方法的好处我觉得在于它利用了一个全局的趋势信息(T),然后预测的目标多了一个持续时间。另外因为趋势是一个长时间的,所以这个是适用于长期的预测,如长期的投资等。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容