Java编写基于netty的RPC框架

一 简单概念

RPC: ( Remote Procedure Call),远程调用过程,是通过网络调用远程计算机的进程中某个方法,从而获取到想要的数据,过程如同调用本地的方法一样.

阻塞IO :当阻塞I/O在调用InputStream.read()方法是阻塞的,一直等到数据到来时才返回,同样ServerSocket.accept()方法时,也是阻塞,直到有客户端连接才返回,I/O通信模式如下:

缺点:当客户端多时,会创建大量的处理线程,并且为每一个线程分配一定的资源;阻塞可能带来频繁切换上下文,这时引入NIO

NIO : jdk1.4引入的(NEW Input/Output),是基于通过和缓存区的I/O方式,(插入一段题外话,学的多忘得也多,之前有认真研究过NIO,后来用到的时候,忘得一干二净,所以学习一些东西,经常返回看看),NIO是一种非阻塞的IO模型,通过不断轮询IO事件是否就绪,非阻塞是指线程在等待IO的时候,可以做其他的任务,同步的核心是Selector,Selector代替线程本省的轮询IO事件,避免了阻塞同时减少了不必要的线程消耗;非阻塞的核心是通道和缓存区,当IO事件的就绪时,可以将缓存区的数据写入通道

其工作原理:

1 由专门的线程来处理所有的IO事件,并且负责转发

2 事件驱动机制:事件到的时候才触发,而不是同步监视

3 线程通讯:线程之间通讯通过wait,notify等方式通讯,保证每次上下文切换都是有意义的,减少没必要的线程切换

通道 : 是对原I/O包中流的模拟,所有数据必须通过Channel对象,常见的通道FileChannel,SocketChannel,ServerSocketChannel,DatagramChannel(UDP协议向网络连接的两端读写数据)

Buffer缓存区 :实际上是一个容器,一个连续的数组,任何读写的数据都经过Buffer

Netty :是由JBOSS提供的一个java开源框架,是一个高性能,异步事件驱动的NIO框架,基于JAVA NIO提供的API实现,他提供了TCP UDP和文件传输的支持,,所有操作都是异步非阻塞的.通过Futrue-Listener机制,本质就是Reactor模式的现实,Selector作为多路复用器,EventLoop作为转发器,而且,netty对NIO中buffer做优化,大大提高了性能

二 Netty 客户端和服务端的

Netty中Bootstrap和Channel的生命周期

Bootstrap简介

Bootstarp:引导程序,将ChannelPipeline,ChannelHandler,EventLoop进行整体关联

Bootstrap具体分为两个实现

ServerBootstrap:用于服务端,使用一个ServerChannel接收客户端的连接,并创建对应的子Channel

Bootstrap:用于客户端,只需要一个单独的Channel,配置整个Netty程序,串联起各个组件

二者的主要区别:

1 ServerBootstrap用于Server端,通过调用bind()绑定一个端口监听连接,Bootstrap用于Client端,需要调用connect()方法来连接服务器端,我们也可以调用bind()方法接收返回ChannelFuture中Channel

2 客户端的Bootstrap一般用一个EventLoopGroup,而服务器的ServerBootstrap会用两个第一个EventLoopGroup专门负责绑定到端口监听连接事件,而第二个EventLoopGroup专门用来处处理每个接收的连接,这样大大提高了并发量

public class Server {  public static void main(String[] args) throws Exception {    // 1 创建线两个事件循环组    // 一个是用于处理服务器端接收客户端连接的    // 一个是进行网络通信的(网络读写的)    EventLoopGroup pGroup = new NioEventLoopGroup();    EventLoopGroup cGroup = new NioEventLoopGroup();    // 2 创建辅助工具类ServerBootstrap,用于服务器通道的一系列配置    ServerBootstrap b = new ServerBootstrap();    b.group(pGroup, cGroup) // 绑定俩个线程组        .channel(NioServerSocketChannel.class) // 指定NIO的模式.NioServerSocketChannel对应TCP, NioDatagramChannel对应UDP        .option(ChannelOption.SO_BACKLOG, 1024) // 设置TCP缓冲区        .option(ChannelOption.SO_SNDBUF, 32 * 1024) // 设置发送缓冲大小        .option(ChannelOption.SO_RCVBUF, 32 * 1024) // 这是接收缓冲大小        .option(ChannelOption.SO_KEEPALIVE, true) // 保持连接        .childHandler(new ChannelInitializer<SocketChannel>() {          @Override          protected void initChannel(SocketChannel sc) throws Exception { //SocketChannel建立连接后的管道            // 3 在这里配置 通信数据的处理逻辑, 可以addLast多个...            sc.pipeline().addLast(new ServerHandler());          }        });    // 4 绑定端口, bind返回future(异步), 加上sync阻塞在获取连接处    ChannelFuture cf1 = b.bind(8765).sync();    //ChannelFuture cf2 = b.bind(8764).sync();  //可以绑定多个端口    // 5 等待关闭, 加上sync阻塞在关闭请求处    cf1.channel().closeFuture().sync();    //cf2.channel().closeFuture().sync();    pGroup.shutdownGracefully();    cGroup.shutdownGracefully();  }}

public class ServerHandler extends ChannelHandlerAdapter {  @Override  public void channelActive(ChannelHandlerContext ctx) throws Exception {    System.out.println("server channel active... ");  }  @Override  public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {      ByteBuf buf = (ByteBuf) msg;      byte[] req = new byte[buf.readableBytes()];      buf.readBytes(req);      String body = new String(req, "utf-8");      System.out.println("Server :" + body );      String response = "返回给客户端的响应:" + body ;      ctx.writeAndFlush(Unpooled.copiedBuffer(response.getBytes()));      // future完成后触发监听器, 此处是写完即关闭(短连接). 因此需要关闭连接时, 要通过server端关闭. 直接关闭用方法ctx[.channel()].close()      //.addListener(ChannelFutureListener.CLOSE);  }  @Override  public void channelReadComplete(ChannelHandlerContext ctx)      throws Exception {    System.out.println("读完了");    ctx.flush();  }  @Override  public void exceptionCaught(ChannelHandlerContext ctx, Throwable t)      throws Exception {    ctx.close();  }}

public class Client {  public static void main(String[] args) throws Exception {         EventLoopGroup group = new NioEventLoopGroup();    Bootstrap b = new Bootstrap();    b.group(group)    .channel(NioSocketChannel.class)    .handler(new ChannelInitializer<SocketChannel>() {      @Override      protected void initChannel(SocketChannel sc) throws Exception {         sc.pipeline().addLast(new ClientHandler());      }    });         ChannelFuture cf1 = b.connect("127.0.0.1", 8765).sync();    //ChannelFuture cf2 = b.connect("127.0.0.1", 8764).sync(); //可以使用多个端口    //发送消息, Buffer类型. write需要flush才发送, 可用writeFlush代替    cf1.channel().writeAndFlush(Unpooled.copiedBuffer("777".getBytes()));    cf1.channel().writeAndFlush(Unpooled.copiedBuffer("666".getBytes()));    Thread.sleep(2000);    cf1.channel().writeAndFlush(Unpooled.copiedBuffer("888".getBytes()));    //cf2.channel().writeAndFlush(Unpooled.copiedBuffer("999".getBytes()));         cf1.channel().closeFuture().sync();    //cf2.channel().closeFuture().sync();    group.shutdownGracefully();  }}

public class ClientHandler extends ChannelHandlerAdapter{  @Override  public void channelActive(ChannelHandlerContext ctx) throws Exception {  }  @Override  public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {    try {      ByteBuf buf = (ByteBuf) msg;      byte[] req = new byte[buf.readableBytes()];      buf.readBytes(req);      String body = new String(req, "utf-8");      System.out.println("Client :" + body );    } finally {      // 记得释放xxxHandler里面的方法的msg参数: 写(write)数据, msg引用将被自动释放不用手动处理; 但只读数据时,!必须手动释放引用数       ReferenceCountUtil.release(msg);    }  }  @Override  public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {  }  @Override  public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause)      throws Exception {    ctx.close();  }}

其他组件:

Handle: 为了支持各种协议和处理数据的方式,可以是连接,数据接收,异常,数据格式转换等

ChannelHandler

ChannelInboundHandler :最常用的Handler,作用是处理接收数据的事件,来处理我们的核心业务逻辑。

ChannelInitializer :,当一个链接建立时,我们需要知道怎么来接收或者发送数据,当然,我们有各种各样的Handler实现来处理它,那么ChannelInitializer便是用来配置这些Handler,它会提供一个ChannelPipeline,并把Handler加入到ChannelPipeline。

ChannelPipeline :一个Netty应用基于ChannelPipeline机制,这种机制依赖EventLoop和EventLoopGroup,这三个都和事件或者事件处理相关

EventLoop : 为Channel处理IO操作,一个EventLoop可以为多个Channel服务

EventLoopGroup :包含多个EventLoop

Channel :代表一个Socket连接

Future :在Netty中所有的IO操作都是异步的,,因此我们不知道,过来的请求是否被处理了,所以我们注册一个监听,当操作执行成功或者失败时监听自动触发,所有操作都会返回一个ChannelFutrue

ChannelFuture

Netty 是一个非阻塞的,事件驱动的,网络编程框架,我们通过一张图理解一下,Channel,EventLoop以及EventLoopGroup之间的关系

解释一下,当一个连接过来,Netty首先会注册一个channel,然后EventLoopGroup会分配一个EventLoop绑定到这个channel,在这个channel的整个生命周期过程中,这个EventLoop一直为他服务,这个玩意就是一个线程

这下聊一下Netty如何处理数据?

前面有讲到,handler数据处理核心,,而ChannelPipeline负责安排Handler的顺序和执行,我们可以这样理解,数据在ChannelPipeline中流动,其中ChannelHandler就是一个个阀门,这些数据都会经过每一个ChannelHandler并且被他处理,其中ChannelHandler的两个子类ChannelOutboundHandler和ChannelInboundHandler,根据不同的流向,选择不同的Handler

由图可以看出,一个数据流进入ChannelPipeline时,一个一个handler挨着执行,各个handler的数据传递,这需要调用方法中ChannelHandlerContext来操作,而这个ChannelHandlerContext可以用来读写Netty中的数据流

三 Netty中的业务处理

netty中会有很多Handler.具体哪一种Handler还要看继承是InboundAdapter还是OutboundAdapter,Netty中提供一系列的Adapter来帮助我们简化开发,在ChannelPipeline中的每一个handler都负责把Event传递个洗下一个handler,有这些adapter,这些工作可以自动完成,,我们只需覆盖我们真正实现的部分即可,接下来比较常用的三种ChannelHandler

Encoders和Decodeers

我们在网络传输只能传输字节流,在发送数据时,把我们的message转换成bytes这个过程叫Encode(编码),相反,接收数据,需要把byte转换成message,这个过程叫Decode(解码)

Domain Logic

我们真正关心的如何处理解码以后的数据,我们真正的业务逻辑便是接收处理的数据,Netty提供一个常用的基类就是SimpleChannelInboundHandler<T>,其中T就是Handler处理的数据类型,消息到达这个Handler,会自动调用这个Handler中的channelRead0(ChannelHandlerContext,T)方法,T就是传过来的数据对象

四 基于netty实现的Rpc的例子

这是我的github上项目的位置

https://github.com/developerxiaofeng/rpcByNetty

项目目录结构如下

详细的项目细节看类中的注释,很详细哦!!!

欢迎工作一到五年的Java工程师朋友们加入Java架构开发: 855835163

群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容