装饰器助力Tensor flow 模型构筑, =,= , “材料风”标题

Class Model

class Model:

    def __init__(self, data, target):
        data_size = int(data.get_shape()[1])
        target_size = int(target.get_shape()[1])
        weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
        bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
        incoming = tf.matmul(data, weight) + bias
        self._prediction = tf.nn.softmax(incoming)
        cross_entropy = -tf.reduce_sum(target, tf.log(self._prediction))
        self._optimize = tf.train.RMSPropOptimizer(0.03).minimize(cross_entropy)
        mistakes = tf.not_equal(
            tf.argmax(target, 1), tf.argmax(self._prediction, 1))
        self._error = tf.reduce_mean(tf.cast(mistakes, tf.float32))

    @property
    def prediction(self):
        return self._prediction

    @property
    def optimize(self):
        return self._optimize

    @property
    def error(self):
        return self._error

@property装饰器可以将类函数与其属性相关联。但是以上的方法可读性和复利用性太差。

Use property

class Model:

    def __init__(self, data, target):
        self.data = data
        self.target = target
        self._prediction = None
        self._optimize = None
        self._error = None

    @property
    def prediction(self):
        if not self._prediction:
            data_size = int(self.data.get_shape()[1])
            target_size = int(self.target.get_shape()[1])
            weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
            bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
            incoming = tf.matmul(self.data, weight) + bias
            self._prediction = tf.nn.softmax(incoming)
        return self._prediction

    @property
    def optimize(self):
        if not self._optimize:
            cross_entropy = -tf.reduce_sum(self.target, tf.log(self.prediction))
            optimizer = tf.train.RMSPropOptimizer(0.03)
            self._optimize = optimizer.minimize(cross_entropy)
        return self._optimize

    @property
    def error(self):
        if not self._error:
            mistakes = tf.not_equal(
                tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
            self._error = tf.reduce_mean(tf.cast(mistakes, tf.float32))
        return self._error

Emmm 存在lazy_loading 的问题 , 这里还不太理解。
Code is still a bit bloated due to the lazy loading logic

Lazy Property Decorator

import functools

def  lazy_property(function):
    attribute = '_cache_'  +  function.__name__
    
    @property
    @functools.wrap(function)
    def  decorator(self, attribute):
        if not hasattr(self, attribute):
            setattr(self, attribute, function(self))
        return getattr(self , attribute)

    return decorator

装饰器——以后翻译

通过这个装饰器可以简化模型

class Model:

    def __init__(self, data, target):
        self.data = data
        self.target = target
        self.prediction
        self.optimize
        self.error

    @lazy_property
    def prediction(self):
        data_size = int(self.data.get_shape()[1])
        target_size = int(self.target.get_shape()[1])
        weight = tf.Variable(tf.truncated_normal([data_size, target_size]))
        bias = tf.Variable(tf.constant(0.1, shape=[target_size]))
        incoming = tf.matmul(self.data, weight) + bias
        return tf.nn.softmax(incoming)

    @lazy_property
    def optimize(self):
        cross_entropy = -tf.reduce_sum(self.target, tf.log(self.prediction))
        optimizer = tf.train.RMSPropOptimizer(0.03)
        return optimizer.minimize(cross_entropy)

    @lazy_property
    def error(self):
        mistakes = tf.not_equal(
            tf.argmax(self.target, 1), tf.argmax(self.prediction, 1))
        return tf.reduce_mean(tf.cast(mistakes, tf.float32))

Note that we mention the properties in the constructor. This way the full graph is ensured to be defined by the time we run tf.initialize_variables().

定义计算图的范围

同过函数定义

import functools

def define_scope(function):
    attribute = '_cache_' + function.__name__

    @property
    @functools.wraps(function)
    def decorator(self):
        if not hasattr(self, attribute):
            with tf.variable_scope(function.__name__):
                setattr(self, attribute, function(self))
        return getattr(self, attribute)

    return decorator

插入tf.variable_scope(function.name) 或者 tf.name_scope(function.name) 来定义Scope。

自定义Scope

def doublewrap(function):
    """
    A decorator decorator, allowing to use the decorator to be used without parentheses
    if not arguments are provided. All arguments must be optional.
    """
    @functools.wraps(function)
    def decorator(*args, **kwargs):
        if len(args)  == 1 and len(kwargs) == 0 and callable(args[0]):
            return function(args[0])
        else:
            return lambda wrapee: function(wrapee, *args, **kwargs)
    return decorator

@doublewrap
def define_scope(function, scope=None, *args, **kwargs):
    """
     A decorator for functions that define TensorFlow operations. The wrapped
    function will only be executed once. Subsequent calls to it will directly
    return the result so that operations are added to the graph only once.
    The operations added by the function live within a tf.variable_scope(). If
    this decorator is used with arguments, they will be forwarded to the
    variable scope. The scope name defaults to the name of the wrapped
    function
    """
    attribute = '_cache_' + function.__name__
    name = scope or function.__name__

    @property
    @functools.wraps(function)
    def decorator(self):
        if not hasattr(self, attribute):
            with tf.variable_scope(name, *args, **kwargs):
                setattr(self, attribute, function(self))
        return getattr(self, attribute)

    return decorator

双层装饰器以保证无参时也可照常调用。

本文参考翻译自 Danijar Hafner

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容