自然语言处理基础技术之分词介绍

声明:转载请注明出处:https://www.jianshu.com/p/c90ff074ea90

另外,更多实时更新的个人学习笔记分享,请关注:

CSDN地址:http://blog.csdn.net/m0_37306360

知乎:https://www.zhihu.com/people/yuquanle/columns

公众号:StudyForAI 

今天总结一下现有的分词方法,后附现有比较好的开源实现工具(基于python实现包)~~~

-----------------------------------------分割线--------------------------------------------

首先我们来看看定义:

百度百科定义:中文分词(Chinese Word Segmentation) 指的是将一个汉字序列切分成一个个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。

维基百科定义:Word segmentation is the problem of dividing a string of written language into its component words.

简单的讲,中文分词就是让计算机系统在汉语文本中的词与词之间自动加上空格或其他边界标记。

汉语分词难点:分词规范、歧义切分、未登录词识别。

分词规范:词这个概念一直是汉语语言学界纠缠不清又挥之不去的问题,也就是说,对于词的抽象定义(词是什么)和词的具体界定(什么是词)迄今拿不出一个公认的、具有权威性的词表来。

歧义切分:切分歧义是汉语分词研究中一个大问题,因为歧义字段在汉语文本中大量存在。处理这类问题可能需要进行复杂的上下文语义分析,甚至韵律分析(语气、重音、停顿等)。

未登录词识别:未登录词又叫生词,一般有二种解释:第一种指的是已有的词表中没有收录的词;第二种指的是已有的训练语料中未曾出现过的词。在第二张解释下,又称之为集外词(out of vocabulary,OOV)。

中文分词基本方法:

三大类:基于词典的方法、基于理解的分词方法和基于统计的分词方法。

基于词典的方法(又称机械分词方法)

这种方法本质上就是字符串匹配的方法,将一串文本中的文字片段和已有的词典进行匹配,如果匹配到,则此文字片段就作为一个分词结果。但是基于词典的机械切分会遇到多种问题,最为常见的包括歧义切分问题和未登录词问题

常用的字符串匹配方法有如下几种:

正向最大匹配法(从左到右的方向);

逆向最大匹配法(从右到左的方向);

最小切分(每一句中切出的词数最小)

双向最大匹配(进行从左到右、从右到左两次扫描)

这类算法的优点是速度快,时间复杂度可以保持在O(n),实现简单,效果尚可;但对歧义和未登录词处理效果不佳。

基于理解的分词方法:

基于理解的分词方法是通过让计算机模拟人对句子的理解,达到识别词的效果。其基本思想就是在分词的同时进行句法、语义分析,利用句法信息和语义信息来处理歧义现象。

它通常包括三个部分:分词子系统、句法语义子系统、总控部分。在总控部分的协调下,分词子系统可以获得有关词、句子等的句法和语义信息来对分词歧义进行判断,即它模拟了人对句子的理解过程。

这种分词方法需要使用大量的语言知识和信息。由于汉语语言知识的笼统、复杂性,难以将各种语言信息组织成机器可直接读取的形式,因此目前基于理解的分词系统还处在试验阶段。

基于统计的分词方法:

基于统计的分词方法是在给定大量已经分词的文本的前提下,利用统计机器学习模型学习词语切分的规律(称为训练),从而实现对未知文本的切分。例如最大概率分词方法和最大熵分词方法等。随着大规模语料库的建立,统计机器学习方法的研究和发展,基于统计的中文分词方法渐渐成为了主流方法

主要的统计模型有:N元文法模型(N-gram),隐马尔可夫模型(Hidden Markov Model ,HMM),最大熵模型(ME),条件随机场模型(Conditional Random Fields,CRF)等。

基于统计的分词方法包括:N-最短路径方法、基于词的n元语法模型的分词方法、由字构词的汉语分词方法、基于词感知机算法的汉语分词方法、基于字的生成式模型和区分式模型相结合的汉语分词方法。

基于深度学习的分词方法:

近几年,深度学习方法为分词技术带来了新的思路,直接以最基本的向量化原子特征作为输入,经过多层非线性变换,输出层就可以很好的预测当前字的标记或下一个动作。在深度学习的框架下,仍然可以采用基于子序列标注的方式,或基于转移的方式,以及半马尔科夫条件随机场。

这类方法首先对语料的字进行嵌入,得到字嵌入后,将字嵌入特征输入给双向LSTM,输出层输出深度学习所学习到的特征,并输入给CRF层,得到最终模型。现有的方法包括:LSTM+CRF、BiLSTM+CRF等。

 -------------------------------最后当然是推荐一些不错的实战利器------------------------------------

中文分词工具推荐:

Jieba:“结巴”中文分词:做最好的 Python 中文分词组件

Github地址:https://github.com/fxsjy/jieba

SnowNLP:SnowNLP是一个python写的类库,可以方便的处理中文文本内容。

Github地址:https://github.com/isnowfy/snownlp

THULAC:THULAC(THU Lexical Analyzer for Chinese)由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包,具有中文分词和词性标注功能。

Github地址:https://github.com/thunlp/THULAC

NLPIR:NLPIR-ICTCLAS汉语分词系统。

Github地址:https://github.com/tsroten/pynlpir Stanford CoreNLP

StanfordCoreNLP:斯坦福的,不必多说了。

Github地址:https://github.com/Lynten/stanford-corenlp

Hanlp:HanLP是一系列模型与算法组成的NLP工具包,由大快搜索主导并完全开源,目标是普及自然语言处理在生产环境中的应用。

Github地址:https://github.com/hankcs/pyhanlp

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350