2 SVM(支持向量机法)vs 线性回归+ROC曲线

step1 线性回归ROC与AUC的实现

rm(list = ls())
# BiocManager::install('ROCR')
library(ROCR)
# 载入AER包,使用包中的Affairs数据集
# BiocManager::install('AER')
library(AER)
data(Affairs,package="AER")
# 将'affaris'特征进行因子化处理,作为新增加的一列'ynaffairs'
Affairs$ynaffair[Affairs$affairs > 0] <- 1
Affairs$ynaffair[Affairs$affairs== 0] <- 0
Affairs$ynaffair <-factor(Affairs$ynaffair,levels=c(0,1),labels=c("No","Yes"))
# 构建Logistics模型
myfit <- glm(ynaffair ~ gender + age + yearsmarried + children + religiousness + education + occupation + rating, data=Affairs,family=binomial())
pre <- predict(myfit,type='response')
pred <- prediction(pre,Affairs$ynaffair)
# 计算AUC值
performance(pred,'auc')@y.values
perf <- performance(pred,'tpr','fpr')
plot(perf)

这是计算affair的一个数据集


结果
summary(myfit) ### 得到拟合公式
拟合公式

step2 绘图强大的一个包——pROC

虽然ROCR包可以满足我们的需要,但在功能上还是有些单一,绘制的图也比较粗糙。因此接下来我们学习R中更为强大的一个包——pROC,该包不仅作图美观,还可以在同一幅图上绘制多条ROC曲线,方便我们比较两个分类器的性能优劣。

# BiocManager::install('pROC')
library(pROC)

# 同样使用上一节中的myfit模型
pre <- predict(myfit,type='response')
modelroc <- roc(Affairs$ynaffair,pre)
modelroc

# 可视化展示,同时给出AUC的面积与最优的临界点
plot(modelroc, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE)
结果2

step3 支持向量机法SVM

svm命令的R包 下载

svm命令的R包
# 以下为之前的logistics模型
pre_1 <- predict(myfit,type='response')
modelroc_1 <- roc(Affairs$ynaffair,pre_1)


# 使用支持向量机算法对同样的数据进行预测

library(e1071) ###### 这个包里面有svm
svm_model <- svm(ynaffair ~ gender + age + yearsmarried + children + religiousness + education + occupation + rating, data=Affairs)
# 提取模型预测值并进行格式处理
pred_2 <- as.factor(svm_model$decision.values)
pred_2 <- as.ordered(pred_2)
modelroc_2 <- roc(Affairs$ynaffair,pred_2)
modelroc_2


# 可视化展示,使用add=TRUE将第二个模型添加到图形中
plot.roc(modelroc_2, add=TRUE, col="green",print.thres=TRUE) 
plot(modelroc_1, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2), grid.col=c("green", "red"), max.auc.polygon=TRUE, auc.polygon.col="skyblue", print.thres=TRUE,col='blue')
plot.roc(modelroc_2, add=TRUE, col="green",print.thres=TRUE) 
最终的结果

SVM深度分析:区分training group和test group请参考文章

一文学会SVM——生信技能树

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356