[转载]正则表达式太慢?这里有一个提速100倍的方案(附代码)

转自:2017-12-14 文摘菌  大数据文摘

作者:Vikash Singh

编译:肖依月、吴双、钱天培


“当遇到一个文本处理问题时,如果你在第一时间想到了正则表达式,那么恭喜你,你的问题从一个变成了俩!“

如果你曾参与过文本数据分析,正则表达式(Regex)对你来说一定不陌生。词库索引、关键词替换……正则表达式的强大功能使其成为了文本处理的必备工具。然而, 在处理大文本的情境下,正则表达式的低效率却常常让人抓耳挠腮。今天,文摘菌将为你介绍一款比正则表达式快数百倍的Python库——FlashText。

让人抓狂的数据清洗工作

即便是最简单的文本分析,我们在进入正式分析之前也需要对文本作出数据清洗。清洗的工作往往涉及到搜索和替换关键词。例如,查询文本中是否出现““Python”这一关键词,或是将所有“python“都替换成”“Python”。如果仅有数百个被搜索和被替换的关键词,正则表达式处理起来会很快。但在自然语言处理任务中,有数万关键词的语料库和数百万的文档早已是家常便饭。这种情况下,运行正则表达式的时间就往往要以“天“来作计数单位了。

当然了,你会觉得并行运算能够解决这一问题,但实际上这一方案却收效甚微。有没有其他办法呢?

FlashText的创造者当年也面临了同样的问题,在经过了一番搜寻而无所获后,他决定自己来编写一个新算法。

在了解FlashText的实现原理之前,让我们先来看看FlashText和正则表达式在搜索任务中的性能对比图。

我们可以看到,当关键词数量上升时,Regex所花费的时间几乎呈线性增长,然而FlashText却几乎没受什么影响。

再来看一张执行词语替换任务的对比图

同样的,在词语数量增加时,FlashText的运行时间却几乎不受影响。

所以,什么是FlashText呢?

FlashText是GitHub上的一个开源Python库,正如之前所提到的,它在提取关键字和替换关键字任务上有着极高的性能。

在使用FlashText时,你首先要给它一个关键词列表。这份列表将用于在内部建立一个单词查找树的字典(Trie dictionary)。然后你将一个字符串传递给它,并告诉它是要执行替换还是搜索。

对于替换,它将用替换关键字创建一个新字符串。对于搜索,它将返回字符串中找到的关键字列表。这些任务都只需要遍历字符串一遍。

FlashText为什么这么快?

举个例子吧。我们有一个句子,它由三个单词组成——I like Python,并且假设我们有一个四个单词组成的语料库{Python, Java, J2ee, Ruby}。

如果我们从语料库中拿出每个单词,并且检查它是否出现在句子中,这需要我们遍历字符串四次。

如果语料库里有n个词,它将需要n个循环。并且每个搜索步骤(is in sentence?)将花费自己的时间,这就是正则匹配(Regex match)的机制。

还有与第一种方法相反的另一种方法L对于句子中的每个单词,检查它是否存在于语料库中。

如果这个句子有m个词,它就有m个循环。在这种情况下,所花费的时间只取决于句子中的单词数。这个步骤( is in corpus? )可以使用字典查找快速创建。

FlashText算法是基于第二种方法的,该灵感来自于Aho-Corasick算法和单词查找树数据结构(Trie data structure)。

它的工作方式是:

首先根据语料库创建一个单词查找树字典(Trie data structure)。如下图:

start和EOT(End Of Term)表示单词边界,可以是空格,句号或换行符。关键字只有在它的两边有单词边界时才能被匹配。这样可以防止apple和pineapple的匹配。

接下来,我们将输入一个字符串I like Python,并且一个字符一个字符搜索他、它。

因为该算法是一个字符接一个字符匹配,在搜索I时,我们可以很容易地跳过like在,因为I没有接在后面。这一机制让我们可以很快跳过词库中不存在的词。

FlashText算法只检查输入字符串“I like Python”中的每个字符。即便我们的字典有一百万个关键字,这对它的运行几乎没有影响。这正是FlashText算法的能力所在。

所以你什么时候应用FlashText?

简要回答:当关键词数量>500时

对于搜索而言,大约超过500个关键词后FlashText开始优于正则表达式。

补充:正则表达式可以搜索基于特殊字符为关键字,如^,$,*,\d,.但FlashText是不支持的。

所以如果你想匹配部分的单词(如“word\dvec”)是不行的,但它能很好地提取完整的单词(如“word2vec”)。

最后,奉上FlashText的基本功能调用代码!试一试,是不是比正则表达式快了很多呢?

代码:用FlashText查找关键字

代码:用FlashText替换关键字

原文链接:https://medium.freecodecamp.org/regex-was-taking-5-days-flashtext-does-it-in-15-minutes-55f04411025f

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353